Examples of masker reports¶
Nifti masker reports¶
NiftiMasker¶
Adapted from Simple example of NiftiMasker use
NiftiMasker unfitted
Applying a mask to extract time-series from Niimg-like objects.
NiftiMasker is useful when preprocessing (detrending, standardization,
resampling, etc.) of in-mask :term:`voxels` is necessary.
Use case:
working with time series of :term:`resting-state` or task maps.
WARNING
- This estimator has not been fit yet. Make sure to run `fit` before inspecting reports.
This report shows the input Nifti image overlaid with the outlines of the mask (in green). We recommend to inspect the report for the overlap between the mask and its input image.
NiftiMasker(mask_img=<nibabel.nifti1.Nifti1Image object at 0x7fa7b581f7f0>,
memory='nilearn_cache', standardize='zscore_sample',
target_affine=array([[ 1., 0., 0., -98.],
[ 0., 1., 0., -134.],
[ 0., 0., 1., -72.],
[ 0., 0., 0., 1.]]),
target_shape=(197, 233, 189))In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
| mask_img | <nibabel.nift...x7fa7b581f7f0> | |
| runs | None | |
| smoothing_fwhm | None | |
| standardize | 'zscore_sample' | |
| standardize_confounds | True | |
| detrend | False | |
| high_variance_confounds | False | |
| low_pass | None | |
| high_pass | None | |
| t_r | None | |
| target_affine | array([[ 1.... 0., 1.]]) | |
| target_shape | (197, ...) | |
| mask_strategy | 'background' | |
| mask_args | None | |
| dtype | None | |
| memory | 'nilearn_cache' | |
| memory_level | 1 | |
| verbose | 0 | |
| reports | True | |
| cmap | 'gray' | |
| clean_args | None |
NiftiMasker
Applying a mask to extract time-series from Niimg-like objects.
NiftiMasker is useful when preprocessing (detrending, standardization,
resampling, etc.) of in-mask :term:`voxels` is necessary.
Use case:
working with time series of :term:`resting-state` or task maps.
This report shows the input Nifti image overlaid with the outlines of the mask (in green). We recommend to inspect the report for the overlap between the mask and its input image. To see the input Nifti image before resampling, hover over the displayed image.
The mask includes 1961850 voxels (22.6 %) of the image.
NiftiMasker(mask_img=<nibabel.nifti1.Nifti1Image object at 0x7fa7b581f7f0>,
memory='nilearn_cache', standardize='zscore_sample',
target_affine=array([[ 1., 0., 0., -98.],
[ 0., 1., 0., -134.],
[ 0., 0., 1., -72.],
[ 0., 0., 0., 1.]]),
target_shape=(197, 233, 189))In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
| mask_img | <nibabel.nift...x7fa7b581f7f0> | |
| runs | None | |
| smoothing_fwhm | None | |
| standardize | 'zscore_sample' | |
| standardize_confounds | True | |
| detrend | False | |
| high_variance_confounds | False | |
| low_pass | None | |
| high_pass | None | |
| t_r | None | |
| target_affine | array([[ 1.... 0., 1.]]) | |
| target_shape | (197, ...) | |
| mask_strategy | 'background' | |
| mask_args | None | |
| dtype | None | |
| memory | 'nilearn_cache' | |
| memory_level | 1 | |
| verbose | 0 | |
| reports | True | |
| cmap | 'gray' | |
| clean_args | None |
This report was generated based on information provided at instantiation and fit time. Note that the masker can potentially perform resampling at transform time.
NiftiLabelsMasker¶
Adapted from Extracting signals from brain regions using the NiftiLabelsMasker
NiftiLabelsMasker unfitted Class for extracting data from Niimg-like objects using labels of non-overlapping brain regions. NiftiLabelsMasker is useful when data from non-overlapping volumes should be extracted (contrarily to :class:`nilearn.maskers.NiftiMapsMasker`). Use case: summarize brain signals from clusters that were obtained by prior K-means or Ward clustering. For more details on the definitions of labels in Nilearn, see the :ref:`region` section.
WARNING
- This estimator has not been fit yet. Make sure to run `fit` before inspecting reports.
This report shows the regions defined by the labels of the mask.
Regions summary
NiftiLabelsMasker(labels_img='/home/runner/nilearn_data/schaefer_2018/Schaefer2018_400Parcels_7Networks_order_FSLMNI152_1mm.nii.gz',
lut= index name color
0 0 Background #000000
1 1 7Networks_LH_Vis_1 #781180
2 2 7Networks_LH_Vis_2 #781181
3 3 7Networks_LH_Vis_3 #781182
4 4 7Networks_LH_Vis_4 #781183
.. ... ... ...
396 396 7Networks_RH_Default_pCunPCC_5 #d03f51
397 397 7Networks_RH_Default_pCunPCC_6 #d03f52
398 398 7Networks_RH_Default_pCunPCC_7 #d03f53
399 399 7Networks_RH_Default_pCunPCC_8 #d03f54
400 400 7Networks_RH_Default_pCunPCC_9 #d0404d
[401 rows x 3 columns],
standardize='zscore_sample')In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
| labels_img | '/home/runner/nilearn_d...er_FSLMNI152_1mm.nii.gz' | |
| labels | None | |
| lut | index ...s x 3 columns] | |
| background_label | 0 | |
| mask_img | None | |
| smoothing_fwhm | None | |
| standardize | 'zscore_sample' | |
| standardize_confounds | True | |
| high_variance_confounds | False | |
| detrend | False | |
| low_pass | None | |
| high_pass | None | |
| t_r | None | |
| dtype | None | |
| resampling_target | 'data' | |
| memory | None | |
| memory_level | 1 | |
| verbose | 0 | |
| strategy | 'mean' | |
| keep_masked_labels | False | |
| reports | True | |
| cmap | 'CMRmap_r' | |
| clean_args | None |
NiftiLabelsMasker Class for extracting data from Niimg-like objects using labels of non-overlapping brain regions. NiftiLabelsMasker is useful when data from non-overlapping volumes should be extracted (contrarily to :class:`nilearn.maskers.NiftiMapsMasker`). Use case: summarize brain signals from clusters that were obtained by prior K-means or Ward clustering. For more details on the definitions of labels in Nilearn, see the :ref:`region` section.
This report shows the regions defined by the labels of the mask.
The masker has 400 different non-overlapping regions.
Regions summary
| label value | region name | size (in mm^3) | relative size (in %) |
|---|---|---|---|
| 1 | 7Networks_LH_Vis_1 | 2624 | 0.25 |
| 2 | 7Networks_LH_Vis_2 | 3392 | 0.32 |
| 3 | 7Networks_LH_Vis_3 | 2368 | 0.22 |
| 4 | 7Networks_LH_Vis_4 | 3264 | 0.31 |
| 5 | 7Networks_LH_Vis_5 | 3712 | 0.35 |
| 6 | 7Networks_LH_Vis_6 | 2944 | 0.28 |
| 7 | 7Networks_LH_Vis_7 | 1536 | 0.15 |
| 8 | 7Networks_LH_Vis_8 | 3520 | 0.33 |
| 9 | 7Networks_LH_Vis_9 | 2560 | 0.24 |
| 10 | 7Networks_LH_Vis_10 | 2048 | 0.19 |
| 11 | 7Networks_LH_Vis_11 | 2432 | 0.23 |
| 12 | 7Networks_LH_Vis_12 | 4224 | 0.40 |
| 13 | 7Networks_LH_Vis_13 | 960 | 0.09 |
| 14 | 7Networks_LH_Vis_14 | 3008 | 0.28 |
| 15 | 7Networks_LH_Vis_15 | 3968 | 0.38 |
| 16 | 7Networks_LH_Vis_16 | 1536 | 0.15 |
| 17 | 7Networks_LH_Vis_17 | 3584 | 0.34 |
| 18 | 7Networks_LH_Vis_18 | 3520 | 0.33 |
| 19 | 7Networks_LH_Vis_19 | 4672 | 0.44 |
| 20 | 7Networks_LH_Vis_20 | 896 | 0.08 |
| 21 | 7Networks_LH_Vis_21 | 3776 | 0.36 |
| 22 | 7Networks_LH_Vis_22 | 1856 | 0.18 |
| 23 | 7Networks_LH_Vis_23 | 4416 | 0.42 |
| 24 | 7Networks_LH_Vis_24 | 4928 | 0.47 |
| 25 | 7Networks_LH_Vis_25 | 3840 | 0.36 |
| 26 | 7Networks_LH_Vis_26 | 2112 | 0.20 |
| 27 | 7Networks_LH_Vis_27 | 2304 | 0.22 |
| 28 | 7Networks_LH_Vis_28 | 1728 | 0.16 |
| 29 | 7Networks_LH_Vis_29 | 2304 | 0.22 |
| 30 | 7Networks_LH_Vis_30 | 1984 | 0.19 |
| 31 | 7Networks_LH_Vis_31 | 2176 | 0.21 |
| 32 | 7Networks_LH_SomMot_1 | 3136 | 0.30 |
| 33 | 7Networks_LH_SomMot_2 | 3840 | 0.36 |
| 34 | 7Networks_LH_SomMot_3 | 1216 | 0.12 |
| 35 | 7Networks_LH_SomMot_4 | 1920 | 0.18 |
| 36 | 7Networks_LH_SomMot_5 | 1472 | 0.14 |
| 37 | 7Networks_LH_SomMot_6 | 2624 | 0.25 |
| 38 | 7Networks_LH_SomMot_7 | 1728 | 0.16 |
| 39 | 7Networks_LH_SomMot_8 | 1984 | 0.19 |
| 40 | 7Networks_LH_SomMot_9 | 1920 | 0.18 |
| 41 | 7Networks_LH_SomMot_10 | 1728 | 0.16 |
| 42 | 7Networks_LH_SomMot_11 | 1536 | 0.15 |
| 43 | 7Networks_LH_SomMot_12 | 2304 | 0.22 |
| 44 | 7Networks_LH_SomMot_13 | 1344 | 0.13 |
| 45 | 7Networks_LH_SomMot_14 | 1600 | 0.15 |
| 46 | 7Networks_LH_SomMot_15 | 1472 | 0.14 |
| 47 | 7Networks_LH_SomMot_16 | 2560 | 0.24 |
| 48 | 7Networks_LH_SomMot_17 | 1600 | 0.15 |
| 49 | 7Networks_LH_SomMot_18 | 2240 | 0.21 |
| 50 | 7Networks_LH_SomMot_19 | 1472 | 0.14 |
| 51 | 7Networks_LH_SomMot_20 | 1536 | 0.15 |
| 52 | 7Networks_LH_SomMot_21 | 2816 | 0.27 |
| 53 | 7Networks_LH_SomMot_22 | 1024 | 0.10 |
| 54 | 7Networks_LH_SomMot_23 | 1024 | 0.10 |
| 55 | 7Networks_LH_SomMot_24 | 1792 | 0.17 |
| 56 | 7Networks_LH_SomMot_25 | 2432 | 0.23 |
| 57 | 7Networks_LH_SomMot_26 | 3776 | 0.36 |
| 58 | 7Networks_LH_SomMot_27 | 2944 | 0.28 |
| 59 | 7Networks_LH_SomMot_28 | 2240 | 0.21 |
| 60 | 7Networks_LH_SomMot_29 | 2240 | 0.21 |
| 61 | 7Networks_LH_SomMot_30 | 3072 | 0.29 |
| 62 | 7Networks_LH_SomMot_31 | 1152 | 0.11 |
| 63 | 7Networks_LH_SomMot_32 | 2240 | 0.21 |
| 64 | 7Networks_LH_SomMot_33 | 2816 | 0.27 |
| 65 | 7Networks_LH_SomMot_34 | 1920 | 0.18 |
| 66 | 7Networks_LH_SomMot_35 | 2112 | 0.20 |
| 67 | 7Networks_LH_SomMot_36 | 2048 | 0.19 |
| 68 | 7Networks_LH_SomMot_37 | 832 | 0.08 |
| 69 | 7Networks_LH_DorsAttn_Post_1 | 2752 | 0.26 |
| 70 | 7Networks_LH_DorsAttn_Post_2 | 5056 | 0.48 |
| 71 | 7Networks_LH_DorsAttn_Post_3 | 4480 | 0.42 |
| 72 | 7Networks_LH_DorsAttn_Post_4 | 2880 | 0.27 |
| 73 | 7Networks_LH_DorsAttn_Post_5 | 1344 | 0.13 |
| 74 | 7Networks_LH_DorsAttn_Post_6 | 2368 | 0.22 |
| 75 | 7Networks_LH_DorsAttn_Post_7 | 1920 | 0.18 |
| 76 | 7Networks_LH_DorsAttn_Post_8 | 1856 | 0.18 |
| 77 | 7Networks_LH_DorsAttn_Post_9 | 1856 | 0.18 |
| 78 | 7Networks_LH_DorsAttn_Post_10 | 1408 | 0.13 |
| 79 | 7Networks_LH_DorsAttn_Post_11 | 2496 | 0.24 |
| 80 | 7Networks_LH_DorsAttn_Post_12 | 1600 | 0.15 |
| 81 | 7Networks_LH_DorsAttn_Post_13 | 3136 | 0.30 |
| 82 | 7Networks_LH_DorsAttn_Post_14 | 1664 | 0.16 |
| 83 | 7Networks_LH_DorsAttn_Post_15 | 2368 | 0.22 |
| 84 | 7Networks_LH_DorsAttn_Post_16 | 2752 | 0.26 |
| 85 | 7Networks_LH_DorsAttn_Post_17 | 960 | 0.09 |
| 86 | 7Networks_LH_DorsAttn_FEF_1 | 2432 | 0.23 |
| 87 | 7Networks_LH_DorsAttn_FEF_2 | 2624 | 0.25 |
| 88 | 7Networks_LH_DorsAttn_FEF_3 | 1536 | 0.15 |
| 89 | 7Networks_LH_DorsAttn_FEF_4 | 3840 | 0.36 |
| 90 | 7Networks_LH_DorsAttn_PrCv_1 | 2624 | 0.25 |
| 91 | 7Networks_LH_DorsAttn_PrCv_2 | 2048 | 0.19 |
| 92 | 7Networks_LH_SalVentAttn_ParOper_1 | 3200 | 0.30 |
| 93 | 7Networks_LH_SalVentAttn_ParOper_2 | 2112 | 0.20 |
| 94 | 7Networks_LH_SalVentAttn_ParOper_3 | 3264 | 0.31 |
| 95 | 7Networks_LH_SalVentAttn_ParOper_4 | 2432 | 0.23 |
| 96 | 7Networks_LH_SalVentAttn_TempOcc_1 | 2688 | 0.25 |
| 97 | 7Networks_LH_SalVentAttn_FrOperIns_1 | 2304 | 0.22 |
| 98 | 7Networks_LH_SalVentAttn_FrOperIns_2 | 4096 | 0.39 |
| 99 | 7Networks_LH_SalVentAttn_FrOperIns_3 | 1856 | 0.18 |
| 100 | 7Networks_LH_SalVentAttn_FrOperIns_4 | 1920 | 0.18 |
| 101 | 7Networks_LH_SalVentAttn_FrOperIns_5 | 1920 | 0.18 |
| 102 | 7Networks_LH_SalVentAttn_FrOperIns_6 | 1152 | 0.11 |
| 103 | 7Networks_LH_SalVentAttn_FrOperIns_7 | 1280 | 0.12 |
| 104 | 7Networks_LH_SalVentAttn_FrOperIns_8 | 2112 | 0.20 |
| 105 | 7Networks_LH_SalVentAttn_FrOperIns_9 | 2240 | 0.21 |
| 106 | 7Networks_LH_SalVentAttn_PFCl_1 | 5184 | 0.49 |
| 107 | 7Networks_LH_SalVentAttn_Med_1 | 3264 | 0.31 |
| 108 | 7Networks_LH_SalVentAttn_Med_2 | 3648 | 0.35 |
| 109 | 7Networks_LH_SalVentAttn_Med_3 | 2176 | 0.21 |
| 110 | 7Networks_LH_SalVentAttn_Med_4 | 3136 | 0.30 |
| 111 | 7Networks_LH_SalVentAttn_Med_5 | 1344 | 0.13 |
| 112 | 7Networks_LH_SalVentAttn_Med_6 | 1984 | 0.19 |
| 113 | 7Networks_LH_SalVentAttn_Med_7 | 1536 | 0.15 |
| 114 | 7Networks_LH_Limbic_OFC_1 | 2368 | 0.22 |
| 115 | 7Networks_LH_Limbic_OFC_2 | 3904 | 0.37 |
| 116 | 7Networks_LH_Limbic_OFC_3 | 4736 | 0.45 |
| 117 | 7Networks_LH_Limbic_OFC_4 | 3328 | 0.31 |
| 118 | 7Networks_LH_Limbic_OFC_5 | 3648 | 0.35 |
| 119 | 7Networks_LH_Limbic_TempPole_1 | 4352 | 0.41 |
| 120 | 7Networks_LH_Limbic_TempPole_2 | 3200 | 0.30 |
| 121 | 7Networks_LH_Limbic_TempPole_3 | 2432 | 0.23 |
| 122 | 7Networks_LH_Limbic_TempPole_4 | 3840 | 0.36 |
| 123 | 7Networks_LH_Limbic_TempPole_5 | 3328 | 0.31 |
| 124 | 7Networks_LH_Limbic_TempPole_6 | 5952 | 0.56 |
| 125 | 7Networks_LH_Limbic_TempPole_7 | 3456 | 0.33 |
| 126 | 7Networks_LH_Limbic_TempPole_8 | 1792 | 0.17 |
| 127 | 7Networks_LH_Cont_Par_1 | 2176 | 0.21 |
| 128 | 7Networks_LH_Cont_Par_2 | 1664 | 0.16 |
| 129 | 7Networks_LH_Cont_Par_3 | 2560 | 0.24 |
| 130 | 7Networks_LH_Cont_Par_4 | 2688 | 0.25 |
| 131 | 7Networks_LH_Cont_Par_5 | 1344 | 0.13 |
| 132 | 7Networks_LH_Cont_Par_6 | 2816 | 0.27 |
| 133 | 7Networks_LH_Cont_Temp_1 | 3008 | 0.28 |
| 134 | 7Networks_LH_Cont_OFC_1 | 2944 | 0.28 |
| 135 | 7Networks_LH_Cont_PFCl_1 | 4608 | 0.44 |
| 136 | 7Networks_LH_Cont_PFCl_2 | 2944 | 0.28 |
| 137 | 7Networks_LH_Cont_PFCl_3 | 3456 | 0.33 |
| 138 | 7Networks_LH_Cont_PFCl_4 | 3136 | 0.30 |
| 139 | 7Networks_LH_Cont_PFCl_5 | 4352 | 0.41 |
| 140 | 7Networks_LH_Cont_PFCl_6 | 5952 | 0.56 |
| 141 | 7Networks_LH_Cont_PFCl_7 | 2176 | 0.21 |
| 142 | 7Networks_LH_Cont_PFCl_8 | 3008 | 0.28 |
| 143 | 7Networks_LH_Cont_PFCv_1 | 1216 | 0.12 |
| 144 | 7Networks_LH_Cont_pCun_1 | 2240 | 0.21 |
| 145 | 7Networks_LH_Cont_pCun_2 | 2304 | 0.22 |
| 146 | 7Networks_LH_Cont_Cing_1 | 1088 | 0.10 |
| 147 | 7Networks_LH_Cont_Cing_2 | 1216 | 0.12 |
| 148 | 7Networks_LH_Cont_PFCmp_1 | 4032 | 0.38 |
| 149 | 7Networks_LH_Default_Temp_1 | 4224 | 0.40 |
| 150 | 7Networks_LH_Default_Temp_2 | 3584 | 0.34 |
| 151 | 7Networks_LH_Default_Temp_3 | 4352 | 0.41 |
| 152 | 7Networks_LH_Default_Temp_4 | 4480 | 0.42 |
| 153 | 7Networks_LH_Default_Temp_5 | 3328 | 0.31 |
| 154 | 7Networks_LH_Default_Temp_6 | 4352 | 0.41 |
| 155 | 7Networks_LH_Default_Temp_7 | 1920 | 0.18 |
| 156 | 7Networks_LH_Default_Temp_8 | 1920 | 0.18 |
| 157 | 7Networks_LH_Default_Temp_9 | 2624 | 0.25 |
| 158 | 7Networks_LH_Default_Temp_10 | 1856 | 0.18 |
| 159 | 7Networks_LH_Default_Par_1 | 1984 | 0.19 |
| 160 | 7Networks_LH_Default_Par_2 | 2496 | 0.24 |
| 161 | 7Networks_LH_Default_Par_3 | 3712 | 0.35 |
| 162 | 7Networks_LH_Default_Par_4 | 3328 | 0.31 |
| 163 | 7Networks_LH_Default_Par_5 | 2880 | 0.27 |
| 164 | 7Networks_LH_Default_Par_6 | 3520 | 0.33 |
| 165 | 7Networks_LH_Default_Par_7 | 2496 | 0.24 |
| 166 | 7Networks_LH_Default_PFC_1 | 3392 | 0.32 |
| 167 | 7Networks_LH_Default_PFC_2 | 1856 | 0.18 |
| 168 | 7Networks_LH_Default_PFC_3 | 3072 | 0.29 |
| 169 | 7Networks_LH_Default_PFC_4 | 3712 | 0.35 |
| 170 | 7Networks_LH_Default_PFC_5 | 2496 | 0.24 |
| 171 | 7Networks_LH_Default_PFC_6 | 2560 | 0.24 |
| 172 | 7Networks_LH_Default_PFC_7 | 3456 | 0.33 |
| 173 | 7Networks_LH_Default_PFC_8 | 1920 | 0.18 |
| 174 | 7Networks_LH_Default_PFC_9 | 4480 | 0.42 |
| 175 | 7Networks_LH_Default_PFC_10 | 4224 | 0.40 |
| 176 | 7Networks_LH_Default_PFC_11 | 2688 | 0.25 |
| 177 | 7Networks_LH_Default_PFC_12 | 3712 | 0.35 |
| 178 | 7Networks_LH_Default_PFC_13 | 6848 | 0.65 |
| 179 | 7Networks_LH_Default_PFC_14 | 4352 | 0.41 |
| 180 | 7Networks_LH_Default_PFC_15 | 3456 | 0.33 |
| 181 | 7Networks_LH_Default_PFC_16 | 2176 | 0.21 |
| 182 | 7Networks_LH_Default_PFC_17 | 4160 | 0.39 |
| 183 | 7Networks_LH_Default_PFC_18 | 1792 | 0.17 |
| 184 | 7Networks_LH_Default_PFC_19 | 1856 | 0.18 |
| 185 | 7Networks_LH_Default_PFC_20 | 3264 | 0.31 |
| 186 | 7Networks_LH_Default_PFC_21 | 2432 | 0.23 |
| 187 | 7Networks_LH_Default_PFC_22 | 1984 | 0.19 |
| 188 | 7Networks_LH_Default_PFC_23 | 3328 | 0.31 |
| 189 | 7Networks_LH_Default_PFC_24 | 3200 | 0.30 |
| 190 | 7Networks_LH_Default_pCunPCC_1 | 1408 | 0.13 |
| 191 | 7Networks_LH_Default_pCunPCC_2 | 2048 | 0.19 |
| 192 | 7Networks_LH_Default_pCunPCC_3 | 1728 | 0.16 |
| 193 | 7Networks_LH_Default_pCunPCC_4 | 704 | 0.07 |
| 194 | 7Networks_LH_Default_pCunPCC_5 | 2304 | 0.22 |
| 195 | 7Networks_LH_Default_pCunPCC_6 | 3072 | 0.29 |
| 196 | 7Networks_LH_Default_pCunPCC_7 | 1984 | 0.19 |
| 197 | 7Networks_LH_Default_pCunPCC_8 | 1920 | 0.18 |
| 198 | 7Networks_LH_Default_pCunPCC_9 | 1792 | 0.17 |
| 199 | 7Networks_LH_Default_pCunPCC_10 | 1280 | 0.12 |
| 200 | 7Networks_LH_Default_pCunPCC_11 | 3392 | 0.32 |
| 201 | 7Networks_RH_Vis_1 | 2816 | 0.27 |
| 202 | 7Networks_RH_Vis_2 | 3136 | 0.30 |
| 203 | 7Networks_RH_Vis_3 | 2880 | 0.27 |
| 204 | 7Networks_RH_Vis_4 | 2944 | 0.28 |
| 205 | 7Networks_RH_Vis_5 | 3456 | 0.33 |
| 206 | 7Networks_RH_Vis_6 | 3776 | 0.36 |
| 207 | 7Networks_RH_Vis_7 | 1024 | 0.10 |
| 208 | 7Networks_RH_Vis_8 | 2112 | 0.20 |
| 209 | 7Networks_RH_Vis_9 | 4928 | 0.47 |
| 210 | 7Networks_RH_Vis_10 | 1984 | 0.19 |
| 211 | 7Networks_RH_Vis_11 | 2496 | 0.24 |
| 212 | 7Networks_RH_Vis_12 | 2688 | 0.25 |
| 213 | 7Networks_RH_Vis_13 | 3584 | 0.34 |
| 214 | 7Networks_RH_Vis_14 | 1728 | 0.16 |
| 215 | 7Networks_RH_Vis_15 | 5760 | 0.55 |
| 216 | 7Networks_RH_Vis_16 | 4992 | 0.47 |
| 217 | 7Networks_RH_Vis_17 | 1024 | 0.10 |
| 218 | 7Networks_RH_Vis_18 | 3008 | 0.28 |
| 219 | 7Networks_RH_Vis_19 | 4928 | 0.47 |
| 220 | 7Networks_RH_Vis_20 | 2304 | 0.22 |
| 221 | 7Networks_RH_Vis_21 | 2304 | 0.22 |
| 222 | 7Networks_RH_Vis_22 | 4608 | 0.44 |
| 223 | 7Networks_RH_Vis_23 | 3712 | 0.35 |
| 224 | 7Networks_RH_Vis_24 | 2752 | 0.26 |
| 225 | 7Networks_RH_Vis_25 | 2176 | 0.21 |
| 226 | 7Networks_RH_Vis_26 | 3776 | 0.36 |
| 227 | 7Networks_RH_Vis_27 | 2496 | 0.24 |
| 228 | 7Networks_RH_Vis_28 | 2816 | 0.27 |
| 229 | 7Networks_RH_Vis_29 | 3584 | 0.34 |
| 230 | 7Networks_RH_Vis_30 | 2688 | 0.25 |
| 231 | 7Networks_RH_SomMot_1 | 3904 | 0.37 |
| 232 | 7Networks_RH_SomMot_2 | 3072 | 0.29 |
| 233 | 7Networks_RH_SomMot_3 | 3264 | 0.31 |
| 234 | 7Networks_RH_SomMot_4 | 1216 | 0.12 |
| 235 | 7Networks_RH_SomMot_5 | 896 | 0.08 |
| 236 | 7Networks_RH_SomMot_6 | 768 | 0.07 |
| 237 | 7Networks_RH_SomMot_7 | 2688 | 0.25 |
| 238 | 7Networks_RH_SomMot_8 | 1856 | 0.18 |
| 239 | 7Networks_RH_SomMot_9 | 1088 | 0.10 |
| 240 | 7Networks_RH_SomMot_10 | 2112 | 0.20 |
| 241 | 7Networks_RH_SomMot_11 | 1024 | 0.10 |
| 242 | 7Networks_RH_SomMot_12 | 2048 | 0.19 |
| 243 | 7Networks_RH_SomMot_13 | 1472 | 0.14 |
| 244 | 7Networks_RH_SomMot_14 | 1536 | 0.15 |
| 245 | 7Networks_RH_SomMot_15 | 1088 | 0.10 |
| 246 | 7Networks_RH_SomMot_16 | 3968 | 0.38 |
| 247 | 7Networks_RH_SomMot_17 | 1856 | 0.18 |
| 248 | 7Networks_RH_SomMot_18 | 1984 | 0.19 |
| 249 | 7Networks_RH_SomMot_19 | 1152 | 0.11 |
| 250 | 7Networks_RH_SomMot_20 | 1088 | 0.10 |
| 251 | 7Networks_RH_SomMot_21 | 1600 | 0.15 |
| 252 | 7Networks_RH_SomMot_22 | 1792 | 0.17 |
| 253 | 7Networks_RH_SomMot_23 | 2240 | 0.21 |
| 254 | 7Networks_RH_SomMot_24 | 3264 | 0.31 |
| 255 | 7Networks_RH_SomMot_25 | 1600 | 0.15 |
| 256 | 7Networks_RH_SomMot_26 | 2880 | 0.27 |
| 257 | 7Networks_RH_SomMot_27 | 1472 | 0.14 |
| 258 | 7Networks_RH_SomMot_28 | 1664 | 0.16 |
| 259 | 7Networks_RH_SomMot_29 | 1600 | 0.15 |
| 260 | 7Networks_RH_SomMot_30 | 1984 | 0.19 |
| 261 | 7Networks_RH_SomMot_31 | 2048 | 0.19 |
| 262 | 7Networks_RH_SomMot_32 | 2048 | 0.19 |
| 263 | 7Networks_RH_SomMot_33 | 1152 | 0.11 |
| 264 | 7Networks_RH_SomMot_34 | 1152 | 0.11 |
| 265 | 7Networks_RH_SomMot_35 | 1216 | 0.12 |
| 266 | 7Networks_RH_SomMot_36 | 1920 | 0.18 |
| 267 | 7Networks_RH_SomMot_37 | 1984 | 0.19 |
| 268 | 7Networks_RH_SomMot_38 | 2304 | 0.22 |
| 269 | 7Networks_RH_SomMot_39 | 2176 | 0.21 |
| 270 | 7Networks_RH_SomMot_40 | 1152 | 0.11 |
| 271 | 7Networks_RH_DorsAttn_Post_1 | 5952 | 0.56 |
| 272 | 7Networks_RH_DorsAttn_Post_2 | 2624 | 0.25 |
| 273 | 7Networks_RH_DorsAttn_Post_3 | 2688 | 0.25 |
| 274 | 7Networks_RH_DorsAttn_Post_4 | 3328 | 0.31 |
| 275 | 7Networks_RH_DorsAttn_Post_5 | 1984 | 0.19 |
| 276 | 7Networks_RH_DorsAttn_Post_6 | 1216 | 0.12 |
| 277 | 7Networks_RH_DorsAttn_Post_7 | 1088 | 0.10 |
| 278 | 7Networks_RH_DorsAttn_Post_8 | 1856 | 0.18 |
| 279 | 7Networks_RH_DorsAttn_Post_9 | 1728 | 0.16 |
| 280 | 7Networks_RH_DorsAttn_Post_10 | 1792 | 0.17 |
| 281 | 7Networks_RH_DorsAttn_Post_11 | 2240 | 0.21 |
| 282 | 7Networks_RH_DorsAttn_Post_12 | 2880 | 0.27 |
| 283 | 7Networks_RH_DorsAttn_Post_13 | 1920 | 0.18 |
| 284 | 7Networks_RH_DorsAttn_Post_14 | 2944 | 0.28 |
| 285 | 7Networks_RH_DorsAttn_Post_15 | 2048 | 0.19 |
| 286 | 7Networks_RH_DorsAttn_Post_16 | 3136 | 0.30 |
| 287 | 7Networks_RH_DorsAttn_Post_17 | 3776 | 0.36 |
| 288 | 7Networks_RH_DorsAttn_Post_18 | 2048 | 0.19 |
| 289 | 7Networks_RH_DorsAttn_Post_19 | 2816 | 0.27 |
| 290 | 7Networks_RH_DorsAttn_FEF_1 | 2560 | 0.24 |
| 291 | 7Networks_RH_DorsAttn_FEF_2 | 2432 | 0.23 |
| 292 | 7Networks_RH_DorsAttn_FEF_3 | 1408 | 0.13 |
| 293 | 7Networks_RH_DorsAttn_PrCv_1 | 3328 | 0.31 |
| 294 | 7Networks_RH_SalVentAttn_TempOccPar_1 | 1984 | 0.19 |
| 295 | 7Networks_RH_SalVentAttn_TempOccPar_2 | 1536 | 0.15 |
| 296 | 7Networks_RH_SalVentAttn_TempOccPar_3 | 1600 | 0.15 |
| 297 | 7Networks_RH_SalVentAttn_TempOccPar_4 | 2880 | 0.27 |
| 298 | 7Networks_RH_SalVentAttn_TempOccPar_5 | 2560 | 0.24 |
| 299 | 7Networks_RH_SalVentAttn_TempOccPar_6 | 2496 | 0.24 |
| 300 | 7Networks_RH_SalVentAttn_TempOccPar_7 | 2944 | 0.28 |
| 301 | 7Networks_RH_SalVentAttn_PrC_1 | 2880 | 0.27 |
| 302 | 7Networks_RH_SalVentAttn_FrOperIns_1 | 2496 | 0.24 |
| 303 | 7Networks_RH_SalVentAttn_FrOperIns_2 | 2304 | 0.22 |
| 304 | 7Networks_RH_SalVentAttn_FrOperIns_3 | 2304 | 0.22 |
| 305 | 7Networks_RH_SalVentAttn_FrOperIns_4 | 1280 | 0.12 |
| 306 | 7Networks_RH_SalVentAttn_FrOperIns_5 | 3264 | 0.31 |
| 307 | 7Networks_RH_SalVentAttn_FrOperIns_6 | 1152 | 0.11 |
| 308 | 7Networks_RH_SalVentAttn_FrOperIns_7 | 2496 | 0.24 |
| 309 | 7Networks_RH_SalVentAttn_FrOperIns_8 | 2368 | 0.22 |
| 310 | 7Networks_RH_SalVentAttn_PFCl_1 | 5312 | 0.50 |
| 311 | 7Networks_RH_SalVentAttn_Med_1 | 4224 | 0.40 |
| 312 | 7Networks_RH_SalVentAttn_Med_2 | 3264 | 0.31 |
| 313 | 7Networks_RH_SalVentAttn_Med_3 | 1856 | 0.18 |
| 314 | 7Networks_RH_SalVentAttn_Med_4 | 1536 | 0.15 |
| 315 | 7Networks_RH_SalVentAttn_Med_5 | 1408 | 0.13 |
| 316 | 7Networks_RH_SalVentAttn_Med_6 | 1472 | 0.14 |
| 317 | 7Networks_RH_SalVentAttn_Med_7 | 2240 | 0.21 |
| 318 | 7Networks_RH_SalVentAttn_Med_8 | 1280 | 0.12 |
| 319 | 7Networks_RH_Limbic_OFC_1 | 2880 | 0.27 |
| 320 | 7Networks_RH_Limbic_OFC_2 | 3008 | 0.28 |
| 321 | 7Networks_RH_Limbic_OFC_3 | 2752 | 0.26 |
| 322 | 7Networks_RH_Limbic_OFC_4 | 1856 | 0.18 |
| 323 | 7Networks_RH_Limbic_OFC_5 | 2368 | 0.22 |
| 324 | 7Networks_RH_Limbic_OFC_6 | 2432 | 0.23 |
| 325 | 7Networks_RH_Limbic_TempPole_1 | 5568 | 0.53 |
| 326 | 7Networks_RH_Limbic_TempPole_2 | 4736 | 0.45 |
| 327 | 7Networks_RH_Limbic_TempPole_3 | 3136 | 0.30 |
| 328 | 7Networks_RH_Limbic_TempPole_4 | 4032 | 0.38 |
| 329 | 7Networks_RH_Limbic_TempPole_5 | 3648 | 0.35 |
| 330 | 7Networks_RH_Limbic_TempPole_6 | 3264 | 0.31 |
| 331 | 7Networks_RH_Limbic_TempPole_7 | 2304 | 0.22 |
| 332 | 7Networks_RH_Cont_Par_1 | 3584 | 0.34 |
| 333 | 7Networks_RH_Cont_Par_2 | 1728 | 0.16 |
| 334 | 7Networks_RH_Cont_Par_3 | 2112 | 0.20 |
| 335 | 7Networks_RH_Cont_Par_4 | 1280 | 0.12 |
| 336 | 7Networks_RH_Cont_Par_5 | 1216 | 0.12 |
| 337 | 7Networks_RH_Cont_Par_6 | 3072 | 0.29 |
| 338 | 7Networks_RH_Cont_Temp_1 | 4480 | 0.42 |
| 339 | 7Networks_RH_Cont_Temp_2 | 3648 | 0.35 |
| 340 | 7Networks_RH_Cont_PFCv_1 | 1600 | 0.15 |
| 341 | 7Networks_RH_Cont_PFCl_1 | 3200 | 0.30 |
| 342 | 7Networks_RH_Cont_PFCl_2 | 4160 | 0.39 |
| 343 | 7Networks_RH_Cont_PFCl_3 | 7552 | 0.71 |
| 344 | 7Networks_RH_Cont_PFCl_4 | 2368 | 0.22 |
| 345 | 7Networks_RH_Cont_PFCl_5 | 5440 | 0.51 |
| 346 | 7Networks_RH_Cont_PFCl_6 | 2432 | 0.23 |
| 347 | 7Networks_RH_Cont_PFCl_7 | 2112 | 0.20 |
| 348 | 7Networks_RH_Cont_PFCl_8 | 3328 | 0.31 |
| 349 | 7Networks_RH_Cont_PFCl_9 | 3584 | 0.34 |
| 350 | 7Networks_RH_Cont_PFCl_10 | 2432 | 0.23 |
| 351 | 7Networks_RH_Cont_PFCl_11 | 3136 | 0.30 |
| 352 | 7Networks_RH_Cont_PFCl_12 | 3776 | 0.36 |
| 353 | 7Networks_RH_Cont_PFCl_13 | 2432 | 0.23 |
| 354 | 7Networks_RH_Cont_PFCl_14 | 4544 | 0.43 |
| 355 | 7Networks_RH_Cont_PFCl_15 | 3584 | 0.34 |
| 356 | 7Networks_RH_Cont_pCun_1 | 2624 | 0.25 |
| 357 | 7Networks_RH_Cont_pCun_2 | 1792 | 0.17 |
| 358 | 7Networks_RH_Cont_Cing_1 | 1024 | 0.10 |
| 359 | 7Networks_RH_Cont_Cing_2 | 960 | 0.09 |
| 360 | 7Networks_RH_Cont_PFCmp_1 | 3072 | 0.29 |
| 361 | 7Networks_RH_Cont_PFCmp_2 | 2752 | 0.26 |
| 362 | 7Networks_RH_Default_Par_1 | 1408 | 0.13 |
| 363 | 7Networks_RH_Default_Par_2 | 3776 | 0.36 |
| 364 | 7Networks_RH_Default_Par_3 | 3904 | 0.37 |
| 365 | 7Networks_RH_Default_Par_4 | 1984 | 0.19 |
| 366 | 7Networks_RH_Default_Par_5 | 3328 | 0.31 |
| 367 | 7Networks_RH_Default_Temp_1 | 4544 | 0.43 |
| 368 | 7Networks_RH_Default_Temp_2 | 4480 | 0.42 |
| 369 | 7Networks_RH_Default_Temp_3 | 2752 | 0.26 |
| 370 | 7Networks_RH_Default_Temp_4 | 4736 | 0.45 |
| 371 | 7Networks_RH_Default_Temp_5 | 2304 | 0.22 |
| 372 | 7Networks_RH_Default_Temp_6 | 1216 | 0.12 |
| 373 | 7Networks_RH_Default_Temp_7 | 1344 | 0.13 |
| 374 | 7Networks_RH_Default_Temp_8 | 2560 | 0.24 |
| 375 | 7Networks_RH_Default_PFCv_1 | 3072 | 0.29 |
| 376 | 7Networks_RH_Default_PFCv_2 | 2368 | 0.22 |
| 377 | 7Networks_RH_Default_PFCv_3 | 3712 | 0.35 |
| 378 | 7Networks_RH_Default_PFCv_4 | 3840 | 0.36 |
| 379 | 7Networks_RH_Default_PFCdPFCm_1 | 4992 | 0.47 |
| 380 | 7Networks_RH_Default_PFCdPFCm_2 | 2816 | 0.27 |
| 381 | 7Networks_RH_Default_PFCdPFCm_3 | 3968 | 0.38 |
| 382 | 7Networks_RH_Default_PFCdPFCm_4 | 4416 | 0.42 |
| 383 | 7Networks_RH_Default_PFCdPFCm_5 | 2880 | 0.27 |
| 384 | 7Networks_RH_Default_PFCdPFCm_6 | 1280 | 0.12 |
| 385 | 7Networks_RH_Default_PFCdPFCm_7 | 2240 | 0.21 |
| 386 | 7Networks_RH_Default_PFCdPFCm_8 | 3008 | 0.28 |
| 387 | 7Networks_RH_Default_PFCdPFCm_9 | 2112 | 0.20 |
| 388 | 7Networks_RH_Default_PFCdPFCm_10 | 3008 | 0.28 |
| 389 | 7Networks_RH_Default_PFCdPFCm_11 | 3392 | 0.32 |
| 390 | 7Networks_RH_Default_PFCdPFCm_12 | 3072 | 0.29 |
| 391 | 7Networks_RH_Default_PFCdPFCm_13 | 3072 | 0.29 |
| 392 | 7Networks_RH_Default_pCunPCC_1 | 3200 | 0.30 |
| 393 | 7Networks_RH_Default_pCunPCC_2 | 448 | 0.04 |
| 394 | 7Networks_RH_Default_pCunPCC_3 | 1280 | 0.12 |
| 395 | 7Networks_RH_Default_pCunPCC_4 | 2176 | 0.21 |
| 396 | 7Networks_RH_Default_pCunPCC_5 | 1088 | 0.10 |
| 397 | 7Networks_RH_Default_pCunPCC_6 | 2816 | 0.27 |
| 398 | 7Networks_RH_Default_pCunPCC_7 | 1984 | 0.19 |
| 399 | 7Networks_RH_Default_pCunPCC_8 | 1344 | 0.13 |
| 400 | 7Networks_RH_Default_pCunPCC_9 | 1920 | 0.18 |
NiftiLabelsMasker(labels_img='/home/runner/nilearn_data/schaefer_2018/Schaefer2018_400Parcels_7Networks_order_FSLMNI152_1mm.nii.gz',
lut= index name color
0 0 Background #000000
1 1 7Networks_LH_Vis_1 #781180
2 2 7Networks_LH_Vis_2 #781181
3 3 7Networks_LH_Vis_3 #781182
4 4 7Networks_LH_Vis_4 #781183
.. ... ... ...
396 396 7Networks_RH_Default_pCunPCC_5 #d03f51
397 397 7Networks_RH_Default_pCunPCC_6 #d03f52
398 398 7Networks_RH_Default_pCunPCC_7 #d03f53
399 399 7Networks_RH_Default_pCunPCC_8 #d03f54
400 400 7Networks_RH_Default_pCunPCC_9 #d0404d
[401 rows x 3 columns],
standardize='zscore_sample')In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
| labels_img | '/home/runner/nilearn_d...er_FSLMNI152_1mm.nii.gz' | |
| labels | None | |
| lut | index ...s x 3 columns] | |
| background_label | 0 | |
| mask_img | None | |
| smoothing_fwhm | None | |
| standardize | 'zscore_sample' | |
| standardize_confounds | True | |
| high_variance_confounds | False | |
| detrend | False | |
| low_pass | None | |
| high_pass | None | |
| t_r | None | |
| dtype | None | |
| resampling_target | 'data' | |
| memory | None | |
| memory_level | 1 | |
| verbose | 0 | |
| strategy | 'mean' | |
| keep_masked_labels | False | |
| reports | True | |
| cmap | 'CMRmap_r' | |
| clean_args | None |
This report was generated based on information provided at instantiation and fit time. Note that the masker can potentially perform resampling at transform time.
NiftiMapsMasker¶
Adapted from Extracting signals of a probabilistic atlas of functional regions
NiftiMapsMasker unfitted Class for extracting data from Niimg-like objects using maps of potentially overlapping brain regions. NiftiMapsMasker is useful when data from overlapping volumes should be extracted (contrarily to :class:`nilearn.maskers.NiftiLabelsMasker`). Use case: summarize brain signals from large-scale networks obtained by prior PCA or :term:`ICA`. .. note:: Inf or NaN present in the given input images are automatically put to zero rather than considered as missing data. For more details on the definitions of maps in Nilearn, see the :ref:`region` section.
WARNING
- This estimator has not been fit yet. Make sure to run `fit` before inspecting reports.
This report shows the spatial maps provided to the mask.
NiftiMapsMasker(maps_img='/home/runner/nilearn_data/difumo_atlases/64/2mm/maps.nii.gz',
memory='nilearn_cache', memory_level=1,
standardize='zscore_sample')In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
| maps_img | '/home/runner/nilearn_d...ases/64/2mm/maps.nii.gz' | |
| mask_img | None | |
| allow_overlap | True | |
| smoothing_fwhm | None | |
| standardize | 'zscore_sample' | |
| standardize_confounds | True | |
| high_variance_confounds | False | |
| detrend | False | |
| low_pass | None | |
| high_pass | None | |
| t_r | None | |
| dtype | None | |
| resampling_target | 'data' | |
| keep_masked_maps | False | |
| memory | 'nilearn_cache' | |
| memory_level | 1 | |
| verbose | 0 | |
| reports | True | |
| cmap | 'CMRmap_r' | |
| clean_args | None |
NiftiMapsMasker Class for extracting data from Niimg-like objects using maps of potentially overlapping brain regions. NiftiMapsMasker is useful when data from overlapping volumes should be extracted (contrarily to :class:`nilearn.maskers.NiftiLabelsMasker`). Use case: summarize brain signals from large-scale networks obtained by prior PCA or :term:`ICA`. .. note:: Inf or NaN present in the given input images are automatically put to zero rather than considered as missing data. For more details on the definitions of maps in Nilearn, see the :ref:`region` section.
Map
This report shows the spatial maps provided to the mask.
The masker has 64 spatial maps in total.
Only 3 spatial maps are shown in this report.
NiftiMapsMasker(maps_img='/home/runner/nilearn_data/difumo_atlases/64/2mm/maps.nii.gz',
memory='nilearn_cache', memory_level=1,
standardize='zscore_sample')In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
| maps_img | '/home/runner/nilearn_d...ases/64/2mm/maps.nii.gz' | |
| mask_img | None | |
| allow_overlap | True | |
| smoothing_fwhm | None | |
| standardize | 'zscore_sample' | |
| standardize_confounds | True | |
| high_variance_confounds | False | |
| detrend | False | |
| low_pass | None | |
| high_pass | None | |
| t_r | None | |
| dtype | None | |
| resampling_target | 'data' | |
| keep_masked_maps | False | |
| memory | 'nilearn_cache' | |
| memory_level | 1 | |
| verbose | 0 | |
| reports | True | |
| cmap | 'CMRmap_r' | |
| clean_args | None |
This report was generated based on information provided at instantiation and fit time. Note that the masker can potentially perform resampling at transform time.
NiftiSpheresMasker¶
Adapted from Default Mode Network extraction of ADHD dataset
NiftiSpheresMasker unfitted Class for masking of Niimg-like objects using seeds. NiftiSpheresMasker is useful when data from given seeds should be extracted. Use case: summarize brain signals from seeds that were obtained from prior knowledge.
WARNING
- This estimator has not been fit yet. Make sure to run `fit` before inspecting reports.
This report shows the regions defined by the spheres of the masker.
Regions summary
NiftiSpheresMasker(detrend=True, high_pass=0.01, low_pass=0.1,
memory='nilearn_cache', radius=10,
seeds=[(0, -53, 26), (5, 53, -26), (0, 0, 0)],
standardize='zscore_sample', t_r=2)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
| seeds | [(0, ...), (5, ...), ...] | |
| radius | 10 | |
| mask_img | None | |
| allow_overlap | False | |
| smoothing_fwhm | None | |
| standardize | 'zscore_sample' | |
| standardize_confounds | True | |
| high_variance_confounds | False | |
| detrend | True | |
| low_pass | 0.1 | |
| high_pass | 0.01 | |
| t_r | 2 | |
| dtype | None | |
| memory | 'nilearn_cache' | |
| memory_level | 1 | |
| verbose | 0 | |
| reports | True | |
| clean_args | None |
NiftiSpheresMasker Class for masking of Niimg-like objects using seeds. NiftiSpheresMasker is useful when data from given seeds should be extracted. Use case: summarize brain signals from seeds that were obtained from prior knowledge.
This report shows the regions defined by the spheres of the masker.
The masker has 3 spheres in total (displayed together on the first image).
Only 3 specific spheres can be browsed in this report with Previous and Next buttons.
Regions summary
| seed number | coordinates | position | radius | size (in mm^3) | size (in voxels) | relative size (in %) |
|---|---|---|---|---|---|---|
| 0 | [0, -53, 26] | [24, 20, 26] | 10 | 4188.79 | not implemented | not implemented |
| 1 | [5, 53, -26] | [25, 46, 13] | 10 | 4188.79 | not implemented | not implemented |
| 2 | [0, 0, 0] | [24, 33, 20] | 10 | 4188.79 | not implemented | not implemented |
NiftiSpheresMasker(detrend=True, high_pass=0.01, low_pass=0.1,
memory='nilearn_cache', radius=10,
seeds=[(0, -53, 26), (5, 53, -26), (0, 0, 0)],
standardize='zscore_sample', t_r=2)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
| seeds | [(0, ...), (5, ...), ...] | |
| radius | 10 | |
| mask_img | None | |
| allow_overlap | False | |
| smoothing_fwhm | None | |
| standardize | 'zscore_sample' | |
| standardize_confounds | True | |
| high_variance_confounds | False | |
| detrend | True | |
| low_pass | 0.1 | |
| high_pass | 0.01 | |
| t_r | 2 | |
| dtype | None | |
| memory | 'nilearn_cache' | |
| memory_level | 1 | |
| verbose | 0 | |
| reports | True | |
| clean_args | None |
Surface masker reports¶
SurfaceMasker¶
SurfaceMasker unfitted Extract data from a :obj:`~nilearn.surface.SurfaceImage`. .. nilearn_versionadded:: 0.11.0
WARNING
- This estimator has not been fit yet. Make sure to run `fit` before inspecting reports.
This report shows the input surface image overlaid with the outlines of the mask. We recommend to inspect the report for the overlap between the mask and its input image.
SurfaceMasker(mask_img=<SurfaceImage (20484,)>)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
| mask_img | <SurfaceImage (20484,)> | |
| smoothing_fwhm | None | |
| standardize | False | |
| standardize_confounds | True | |
| detrend | False | |
| high_variance_confounds | False | |
| low_pass | None | |
| high_pass | None | |
| t_r | None | |
| memory | None | |
| memory_level | 1 | |
| verbose | 0 | |
| reports | True | |
| cmap | 'inferno' | |
| clean_args | None |
SurfaceMasker Extract data from a :obj:`~nilearn.surface.SurfaceImage`. .. nilearn_versionadded:: 0.11.0
This report shows the input surface image overlaid with the outlines of the mask. We recommend to inspect the report for the overlap between the mask and its input image.
The mask includes 341 vertices (1.7 %) of the image.
| Hemisphere | Number of vertices |
|---|---|
| left | 10242 |
| right | 10242 |
SurfaceMasker(mask_img=<SurfaceImage (20484,)>)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
| mask_img | <SurfaceImage (20484,)> | |
| smoothing_fwhm | None | |
| standardize | False | |
| standardize_confounds | True | |
| detrend | False | |
| high_variance_confounds | False | |
| low_pass | None | |
| high_pass | None | |
| t_r | None | |
| memory | None | |
| memory_level | 1 | |
| verbose | 0 | |
| reports | True | |
| cmap | 'inferno' | |
| clean_args | None |
SurfaceLabelsMasker¶
SurfaceLabelsMasker unfitted Extract data from a SurfaceImage, averaging over atlas regions. .. nilearn_versionadded:: 0.11.0
WARNING
- This estimator has not been fit yet. Make sure to run `fit` before inspecting reports.
This report shows the input surface image overlaid with the outlines of the mask. We recommend to inspect the report for the overlap between the mask and its input image.
SurfaceLabelsMasker(labels_img=<SurfaceImage (20484,)>,
lut= index name
0 0 Unknown
1 1 G_and_S_frontomargin
2 2 G_and_S_occipital_inf
3 3 G_and_S_paracentral
4 4 G_and_S_subcentral
.. ... ...
71 71 S_suborbital
72 72 S_subparietal
73 73 S_temporal_inf
74 74 S_temporal_sup
75 75 S_temporal_transverse
[76 rows x 2 columns])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
| labels_img | <SurfaceImage (20484,)> | |
| labels | None | |
| lut | index ...s x 2 columns] | |
| background_label | 0 | |
| mask_img | None | |
| smoothing_fwhm | None | |
| standardize | False | |
| standardize_confounds | True | |
| detrend | False | |
| high_variance_confounds | False | |
| low_pass | None | |
| high_pass | None | |
| t_r | None | |
| memory | None | |
| memory_level | 1 | |
| verbose | 0 | |
| strategy | 'mean' | |
| reports | True | |
| cmap | 'inferno' | |
| clean_args | None |
SurfaceLabelsMasker Extract data from a SurfaceImage, averaging over atlas regions. .. nilearn_versionadded:: 0.11.0
This report shows the input surface image overlaid with the outlines of the mask. We recommend to inspect the report for the overlap between the mask and its input image.
| Hemisphere | Number of vertices |
|---|---|
| left | 10242 |
| right | 10242 |
Regions summary - left
| index | name | size | relative size |
|---|---|---|---|
| 1 | G_and_S_frontomargin | 59 | 0.58 |
| 2 | G_and_S_occipital_inf | 81 | 0.79 |
| 3 | G_and_S_paracentral | 160 | 1.6 |
| 4 | G_and_S_subcentral | 141 | 1.4 |
| 5 | G_and_S_transv_frontopol | 38 | 0.37 |
| 6 | G_and_S_cingul-Ant | 167 | 1.6 |
| 7 | G_and_S_cingul-Mid-Ant | 118 | 1.2 |
| 8 | G_and_S_cingul-Mid-Post | 158 | 1.5 |
| 9 | G_cingul-Post-dorsal | 66 | 0.64 |
| 10 | G_cingul-Post-ventral | 26 | 0.25 |
| 11 | G_cuneus | 94 | 0.92 |
| 12 | G_front_inf-Opercular | 119 | 1.2 |
| 13 | G_front_inf-Orbital | 30 | 0.29 |
| 14 | G_front_inf-Triangul | 68 | 0.66 |
| 15 | G_front_middle | 269 | 2.6 |
| 16 | G_front_sup | 494 | 4.8 |
| 17 | G_Ins_lg_and_S_cent_ins | 49 | 0.48 |
| 18 | G_insular_short | 50 | 0.49 |
| 19 | G_occipital_middle | 132 | 1.3 |
| 20 | G_occipital_sup | 84 | 0.82 |
| 21 | G_oc-temp_lat-fusifor | 113 | 1.1 |
| 22 | G_oc-temp_med-Lingual | 153 | 1.5 |
| 23 | G_oc-temp_med-Parahip | 137 | 1.3 |
| 24 | G_orbital | 153 | 1.5 |
| 25 | G_pariet_inf-Angular | 171 | 1.7 |
| 26 | G_pariet_inf-Supramar | 291 | 2.8 |
| 27 | G_parietal_sup | 260 | 2.5 |
| 28 | G_postcentral | 217 | 2.1 |
| 29 | G_precentral | 244 | 2.4 |
| 30 | G_precuneus | 219 | 2.1 |
| 31 | G_rectus | 77 | 0.75 |
| 32 | G_subcallosal | 14 | 0.14 |
| 33 | G_temp_sup-G_T_transv | 46 | 0.45 |
| 34 | G_temp_sup-Lateral | 180 | 1.8 |
| 35 | G_temp_sup-Plan_polar | 42 | 0.41 |
| 36 | G_temp_sup-Plan_tempo | 83 | 0.81 |
| 37 | G_temporal_inf | 163 | 1.6 |
| 38 | G_temporal_middle | 183 | 1.8 |
| 39 | Lat_Fis-ant-Horizont | 24 | 0.23 |
| 40 | Lat_Fis-ant-Vertical | 18 | 0.18 |
| 41 | Lat_Fis-post | 129 | 1.3 |
| 42 | Medial_wall | 888 | 8.7 |
| 43 | Pole_occipital | 112 | 1.1 |
| 44 | Pole_temporal | 105 | 1.0 |
| 45 | S_calcarine | 198 | 1.9 |
| 46 | S_central | 307 | 3.0 |
| 47 | S_cingul-Marginalis | 129 | 1.3 |
| 48 | S_circular_insula_ant | 57 | 0.56 |
| 49 | S_circular_insula_inf | 151 | 1.5 |
| 50 | S_circular_insula_sup | 193 | 1.9 |
| 51 | S_collat_transv_ant | 55 | 0.54 |
| 52 | S_collat_transv_post | 17 | 0.17 |
| 53 | S_front_inf | 143 | 1.4 |
| 54 | S_front_middle | 86 | 0.84 |
| 55 | S_front_sup | 200 | 2.0 |
| 56 | S_interm_prim-Jensen | 31 | 0.3 |
| 57 | S_intrapariet_and_P_trans | 274 | 2.7 |
| 58 | S_oc_middle_and_Lunatus | 62 | 0.61 |
| 59 | S_oc_sup_and_transversal | 89 | 0.87 |
| 60 | S_occipital_ant | 56 | 0.55 |
| 61 | S_oc-temp_lat | 61 | 0.6 |
| 62 | S_oc-temp_med_and_Lingual | 169 | 1.7 |
| 63 | S_orbital_lateral | 21 | 0.21 |
| 64 | S_orbital_med-olfact | 46 | 0.45 |
| 65 | S_orbital-H_Shaped | 77 | 0.75 |
| 66 | S_parieto_occipital | 138 | 1.3 |
| 67 | S_pericallosal | 118 | 1.2 |
| 68 | S_postcentral | 270 | 2.6 |
| 69 | S_precentral-inf-part | 120 | 1.2 |
| 70 | S_precentral-sup-part | 117 | 1.1 |
| 71 | S_suborbital | 25 | 0.24 |
| 72 | S_subparietal | 88 | 0.86 |
| 73 | S_temporal_inf | 67 | 0.65 |
| 74 | S_temporal_sup | 426 | 4.2 |
| 75 | S_temporal_transverse | 26 | 0.25 |
Regions summary - right
| index | name | size | relative size |
|---|---|---|---|
| 1 | G_and_S_frontomargin | 51 | 0.5 |
| 2 | G_and_S_occipital_inf | 72 | 0.7 |
| 3 | G_and_S_paracentral | 136 | 1.3 |
| 4 | G_and_S_subcentral | 139 | 1.4 |
| 5 | G_and_S_transv_frontopol | 50 | 0.49 |
| 6 | G_and_S_cingul-Ant | 191 | 1.9 |
| 7 | G_and_S_cingul-Mid-Ant | 141 | 1.4 |
| 8 | G_and_S_cingul-Mid-Post | 144 | 1.4 |
| 9 | G_cingul-Post-dorsal | 50 | 0.49 |
| 10 | G_cingul-Post-ventral | 41 | 0.4 |
| 11 | G_cuneus | 95 | 0.93 |
| 12 | G_front_inf-Opercular | 87 | 0.85 |
| 13 | G_front_inf-Orbital | 25 | 0.24 |
| 14 | G_front_inf-Triangul | 69 | 0.67 |
| 15 | G_front_middle | 262 | 2.6 |
| 16 | G_front_sup | 494 | 4.8 |
| 17 | G_Ins_lg_and_S_cent_ins | 59 | 0.58 |
| 18 | G_insular_short | 48 | 0.47 |
| 19 | G_occipital_middle | 124 | 1.2 |
| 20 | G_occipital_sup | 103 | 1.0 |
| 21 | G_oc-temp_lat-fusifor | 110 | 1.1 |
| 22 | G_oc-temp_med-Lingual | 142 | 1.4 |
| 23 | G_oc-temp_med-Parahip | 131 | 1.3 |
| 24 | G_orbital | 170 | 1.7 |
| 25 | G_pariet_inf-Angular | 242 | 2.4 |
| 26 | G_pariet_inf-Supramar | 250 | 2.4 |
| 27 | G_parietal_sup | 193 | 1.9 |
| 28 | G_postcentral | 199 | 1.9 |
| 29 | G_precentral | 237 | 2.3 |
| 30 | G_precuneus | 259 | 2.5 |
| 31 | G_rectus | 62 | 0.61 |
| 32 | G_subcallosal | 15 | 0.15 |
| 33 | G_temp_sup-G_T_transv | 39 | 0.38 |
| 34 | G_temp_sup-Lateral | 161 | 1.6 |
| 35 | G_temp_sup-Plan_polar | 55 | 0.54 |
| 36 | G_temp_sup-Plan_tempo | 64 | 0.62 |
| 37 | G_temporal_inf | 141 | 1.4 |
| 38 | G_temporal_middle | 188 | 1.8 |
| 39 | Lat_Fis-ant-Horizont | 28 | 0.27 |
| 40 | Lat_Fis-ant-Vertical | 19 | 0.19 |
| 41 | Lat_Fis-post | 158 | 1.5 |
| 42 | Medial_wall | 881 | 8.6 |
| 43 | Pole_occipital | 168 | 1.6 |
| 44 | Pole_temporal | 117 | 1.1 |
| 45 | S_calcarine | 177 | 1.7 |
| 46 | S_central | 283 | 2.8 |
| 47 | S_cingul-Marginalis | 151 | 1.5 |
| 48 | S_circular_insula_ant | 59 | 0.58 |
| 49 | S_circular_insula_inf | 120 | 1.2 |
| 50 | S_circular_insula_sup | 145 | 1.4 |
| 51 | S_collat_transv_ant | 70 | 0.68 |
| 52 | S_collat_transv_post | 27 | 0.26 |
| 53 | S_front_inf | 144 | 1.4 |
| 54 | S_front_middle | 125 | 1.2 |
| 55 | S_front_sup | 190 | 1.9 |
| 56 | S_interm_prim-Jensen | 35 | 0.34 |
| 57 | S_intrapariet_and_P_trans | 299 | 2.9 |
| 58 | S_oc_middle_and_Lunatus | 58 | 0.57 |
| 59 | S_oc_sup_and_transversal | 96 | 0.94 |
| 60 | S_occipital_ant | 49 | 0.48 |
| 61 | S_oc-temp_lat | 57 | 0.56 |
| 62 | S_oc-temp_med_and_Lingual | 134 | 1.3 |
| 63 | S_orbital_lateral | 23 | 0.22 |
| 64 | S_orbital_med-olfact | 58 | 0.57 |
| 65 | S_orbital-H_Shaped | 88 | 0.86 |
| 66 | S_parieto_occipital | 125 | 1.2 |
| 67 | S_pericallosal | 130 | 1.3 |
| 68 | S_postcentral | 245 | 2.4 |
| 69 | S_precentral-inf-part | 121 | 1.2 |
| 70 | S_precentral-sup-part | 119 | 1.2 |
| 71 | S_suborbital | 13 | 0.13 |
| 72 | S_subparietal | 117 | 1.1 |
| 73 | S_temporal_inf | 76 | 0.74 |
| 74 | S_temporal_sup | 479 | 4.7 |
| 75 | S_temporal_transverse | 19 | 0.19 |
SurfaceLabelsMasker(labels_img=<SurfaceImage (20484,)>,
lut= index name
0 0 Unknown
1 1 G_and_S_frontomargin
2 2 G_and_S_occipital_inf
3 3 G_and_S_paracentral
4 4 G_and_S_subcentral
.. ... ...
71 71 S_suborbital
72 72 S_subparietal
73 73 S_temporal_inf
74 74 S_temporal_sup
75 75 S_temporal_transverse
[76 rows x 2 columns])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
| labels_img | <SurfaceImage (20484,)> | |
| labels | None | |
| lut | index ...s x 2 columns] | |
| background_label | 0 | |
| mask_img | None | |
| smoothing_fwhm | None | |
| standardize | False | |
| standardize_confounds | True | |
| detrend | False | |
| high_variance_confounds | False | |
| low_pass | None | |
| high_pass | None | |
| t_r | None | |
| memory | None | |
| memory_level | 1 | |
| verbose | 0 | |
| strategy | 'mean' | |
| reports | True | |
| cmap | 'inferno' | |
| clean_args | None |
SurfaceMapsMasker¶
SurfaceMapsMasker unfitted Extract data from a SurfaceImage, using maps of potentially overlapping brain regions. .. nilearn_versionadded:: 0.11.1
WARNING
- This estimator has not been fit yet. Make sure to run `fit` before inspecting reports.
This report shows the input surface image (if provided via img) overlaid with the regions provided via maps_img.
SurfaceMapsMasker(maps_img=<SurfaceImage (20484, 64)>)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
| maps_img | <SurfaceImage (20484, 64)> | |
| mask_img | None | |
| allow_overlap | True | |
| smoothing_fwhm | None | |
| standardize | False | |
| standardize_confounds | True | |
| detrend | False | |
| high_variance_confounds | False | |
| low_pass | None | |
| high_pass | None | |
| t_r | None | |
| memory | None | |
| memory_level | 1 | |
| verbose | 0 | |
| reports | True | |
| cmap | 'inferno' | |
| clean_args | None |
SurfaceMapsMasker Extract data from a SurfaceImage, using maps of potentially overlapping brain regions. .. nilearn_versionadded:: 0.11.1
WARNING
- SurfaceMapsMasker has not been transformed (via transform() method) on any image yet. Plotting only maps for reporting.
Map
This report shows the input surface image (if provided via img) overlaid with the regions provided via maps_img.
The masker has 64 different potentially overlapping regions.
Only 2 regions are shown in this report.
| Hemisphere | Number of vertices |
|---|---|
| left | 10242 |
| right | 10242 |
SurfaceMapsMasker(maps_img=<SurfaceImage (20484, 64)>)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
| maps_img | <SurfaceImage (20484, 64)> | |
| mask_img | None | |
| allow_overlap | True | |
| smoothing_fwhm | None | |
| standardize | False | |
| standardize_confounds | True | |
| detrend | False | |
| high_variance_confounds | False | |
| low_pass | None | |
| high_pass | None | |
| t_r | None | |
| memory | None | |
| memory_level | 1 | |
| verbose | 0 | |
| reports | True | |
| cmap | 'inferno' | |
| clean_args | None |
SurfaceMapsMasker Extract data from a SurfaceImage, using maps of potentially overlapping brain regions. .. nilearn_versionadded:: 0.11.1
WARNING
- SurfaceMapsMasker has not been transformed (via transform() method) on any image yet. Plotting only maps for reporting.
Map
This report shows the input surface image (if provided via img) overlaid with the regions provided via maps_img.
The masker has 64 different potentially overlapping regions.
Only 2 regions are shown in this report.
| Hemisphere | Number of vertices |
|---|---|
| left | 10242 |
| right | 10242 |
SurfaceMapsMasker(maps_img=<SurfaceImage (20484, 64)>)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
| maps_img | <SurfaceImage (20484, 64)> | |
| mask_img | None | |
| allow_overlap | True | |
| smoothing_fwhm | None | |
| standardize | False | |
| standardize_confounds | True | |
| detrend | False | |
| high_variance_confounds | False | |
| low_pass | None | |
| high_pass | None | |
| t_r | None | |
| memory | None | |
| memory_level | 1 | |
| verbose | 0 | |
| reports | True | |
| cmap | 'inferno' | |
| clean_args | None |
Masker reports in notebooks¶
Warning
The reports in this page may appear slightly different than they would in a real report. If you suspect a bug, double check by running in a local notebook.