Decoding of a dataset after GLM fit for signal extraction

Full step-by-step example of fitting a GLM to perform a decoding experiment. In this decoding analysis, we will be doing a one-vs-all classification. We use the data from one subject of the Haxby dataset.

More specifically:

  1. Download the Haxby dataset.

  2. Extract the information to generate a glm representing the blocks of stimuli.

  3. Analyze the decoding performance using a classifier.

Fetch example Haxby dataset

We download the Haxby dataset This is a study of visual object category representation

# By default 2nd subject will be fetched
import numpy as np
import pandas as pd

from nilearn import datasets

haxby_dataset = datasets.fetch_haxby()

# repetition has to be known
t_r = 2.5
[get_dataset_dir] Dataset found in /home/runner/nilearn_data/haxby2001

Load the behavioral data

# Load target information as string and give a numerical identifier to each
behavioral = pd.read_csv(haxby_dataset.session_target[0], sep=" ")
conditions = behavioral["labels"].to_numpy()

# Record these as an array of runs
runs = behavioral["chunks"].to_numpy()
unique_runs = behavioral["chunks"].unique()

# fMRI data: a unique file for each run
func_filename = haxby_dataset.func[0]

Build a proper event structure for each run

events = {}
# events will take the form of a dictionary of Dataframes, one per run
for run in unique_runs:
    # get the condition label per run
    conditions_run = conditions[runs == run]
    # get the number of scans per run, then the corresponding
    # vector of frame times
    n_scans = len(conditions_run)
    frame_times = t_r * np.arange(n_scans)
    # each event last the full TR
    duration = t_r * np.ones(n_scans)
    # Define the events object
    events_ = pd.DataFrame(
        {
            "onset": frame_times,
            "trial_type": conditions_run,
            "duration": duration,
        }
    )
    # remove the rest condition and insert into the dictionary
    events[run] = events_[events_.trial_type != "rest"]

Instantiate and run FirstLevelModel

We generate a list of z-maps together with their run and condition index

z_maps = []
conditions_label = []
run_label = []

# Instantiate the glm
from nilearn.glm.first_level import FirstLevelModel

glm = FirstLevelModel(
    t_r=t_r,
    mask_img=haxby_dataset.mask,
    high_pass=0.008,
    smoothing_fwhm=4,
    memory="nilearn_cache",
)

Run the GLM on data from each run

events[run].trial_type.unique()
from nilearn.image import index_img

for run in unique_runs:
    # grab the fmri data for that particular run
    fmri_run = index_img(func_filename, runs == run)

    # fit the GLM
    glm.fit(fmri_run, events=events[run])

    # set up contrasts: one per condition
    conditions = events[run].trial_type.unique()
    for condition_ in conditions:
        z_maps.append(glm.compute_contrast(condition_))
        conditions_label.append(condition_)
        run_label.append(run)
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7ff5a0e8ecd0>, <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d48e50>, { 'clean_kwargs': {},
  'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 0.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-0.114769, ..., -2.149296],
       ...,
       [ 2.367151, ...,  0.779998]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.575977, ...,  0.481522]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d48e50>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.00779 , ...,  0.924282]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d48e50>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.349128, ..., -1.50145 ]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d48e50>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.902378, ..., -0.291882]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d48e50>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.624816, ..., -1.682436]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d48e50>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.838935, ..., -1.528093]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d48e50>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.06136 , ..., -0.289828]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d48e50>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.983539, ..., 0.291568]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d48e50>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7ff5ac0f6d30>, <nibabel.nifti1.Nifti1Image object at 0x7ff5abca1400>, { 'clean_kwargs': {},
  'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 0.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 12.660587, ..., -13.536042],
       ...,
       [ -3.254408, ..., -33.842804]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.940878, ..., -0.740886]), <nibabel.nifti1.Nifti1Image object at 0x7ff5abca1400>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.56852 , ..., -1.374435]), <nibabel.nifti1.Nifti1Image object at 0x7ff5abca1400>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.141601, ..., -1.208286]), <nibabel.nifti1.Nifti1Image object at 0x7ff5abca1400>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.922613, ...,  2.268412]), <nibabel.nifti1.Nifti1Image object at 0x7ff5abca1400>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.904959, ..., -1.104956]), <nibabel.nifti1.Nifti1Image object at 0x7ff5abca1400>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.242388, ..., 1.270843]), <nibabel.nifti1.Nifti1Image object at 0x7ff5abca1400>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.197666, ..., -1.944003]), <nibabel.nifti1.Nifti1Image object at 0x7ff5abca1400>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.6546  , ..., -0.644223]), <nibabel.nifti1.Nifti1Image object at 0x7ff5abca1400>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7ff5ab242370>, <nibabel.nifti1.Nifti1Image object at 0x7ff5abcc6d30>, { 'clean_kwargs': {},
  'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 0.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 5.205584, ..., 26.587189],
       ...,
       [-6.836576, ..., 10.676956]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.441012, ..., -0.384872]), <nibabel.nifti1.Nifti1Image object at 0x7ff5abcc6d30>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.457669, ..., 1.351326]), <nibabel.nifti1.Nifti1Image object at 0x7ff5abcc6d30>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.697867, ...,  0.601435]), <nibabel.nifti1.Nifti1Image object at 0x7ff5abcc6d30>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.763713, ...,  0.209919]), <nibabel.nifti1.Nifti1Image object at 0x7ff5abcc6d30>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.447911, ..., -1.13823 ]), <nibabel.nifti1.Nifti1Image object at 0x7ff5abcc6d30>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.162822, ..., -2.114926]), <nibabel.nifti1.Nifti1Image object at 0x7ff5abcc6d30>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.785086, ..., -0.260924]), <nibabel.nifti1.Nifti1Image object at 0x7ff5abcc6d30>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.456513, ..., 0.23571 ]), <nibabel.nifti1.Nifti1Image object at 0x7ff5abcc6d30>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7ff5ab6dda60>, <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6dd670>, { 'clean_kwargs': {},
  'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 0.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-2.026206, ...,  5.974948],
       ...,
       [ 2.616334, ...,  0.104535]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.424686, ..., -1.190333]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6dd670>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.365571, ..., -0.28288 ]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6dd670>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.288251, ..., 0.627725]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6dd670>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.327741, ..., -0.321921]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6dd670>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.152188, ..., -0.366314]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6dd670>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.629164, ..., -0.735212]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6dd670>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.873351, ..., -0.14857 ]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6dd670>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.061121, ..., -0.426454]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6dd670>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7ff5ab6abf10>, <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42f40>, { 'clean_kwargs': {},
  'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 0.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 53.033577, ..., -55.45955 ],
       ...,
       [-51.57195 , ..., -55.994713]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.09849 , ..., -0.026579]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42f40>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.329567, ..., -0.355602]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42f40>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.134325, ...,  0.590796]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42f40>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.998496, ..., -0.158513]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42f40>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.0983  , ...,  0.684567]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42f40>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.003411, ..., -1.001089]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42f40>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.28481 , ..., -0.796836]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42f40>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.349998, ..., 1.77109 ]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42f40>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7ff5ac1a33d0>, <nibabel.nifti1.Nifti1Image object at 0x7ff5ac0f6520>, { 'clean_kwargs': {},
  'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 0.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-27.150482, ...,  -5.81308 ],
       ...,
       [-30.204891, ...,   7.417917]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.773093, ...,  1.506396]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ac0f6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.945765, ...,  0.964351]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ac0f6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.489424, ...,  1.36385 ]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ac0f6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.60046 , ...,  1.292458]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ac0f6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.115105, ...,  0.360045]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ac0f6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.341327, ..., -0.115557]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ac0f6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.0463  , ..., -0.011997]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ac0f6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.304337, ..., -0.465647]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ac0f6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7ff5a0202ee0>, <nibabel.nifti1.Nifti1Image object at 0x7ff5a1b48850>, { 'clean_kwargs': {},
  'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 0.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[129.51173 , ..., -15.279282],
       ...,
       [-18.911755, ...,  21.839058]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.091521, ..., -0.624162]), <nibabel.nifti1.Nifti1Image object at 0x7ff5a1b48850>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.375261, ..., -0.645241]), <nibabel.nifti1.Nifti1Image object at 0x7ff5a1b48850>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.852582, ..., 0.144768]), <nibabel.nifti1.Nifti1Image object at 0x7ff5a1b48850>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.861249, ..., -1.104223]), <nibabel.nifti1.Nifti1Image object at 0x7ff5a1b48850>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.147067, ...,  1.938447]), <nibabel.nifti1.Nifti1Image object at 0x7ff5a1b48850>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.043015, ..., 0.397187]), <nibabel.nifti1.Nifti1Image object at 0x7ff5a1b48850>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.518244, ..., -0.247356]), <nibabel.nifti1.Nifti1Image object at 0x7ff5a1b48850>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.292525e-03, ..., -1.546823e+00]), <nibabel.nifti1.Nifti1Image object at 0x7ff5a1b48850>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7ff5ab6ddbe0>, <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6ddc40>, { 'clean_kwargs': {},
  'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 0.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-15.915996, ...,  22.07737 ],
       ...,
       [-16.981215, ...,   3.372383]], dtype=float32),
array([[ 0.      , ...,  1.      ],
       ...,
       [-0.352245, ...,  1.      ]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.011367, ..., -0.044286]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6ddc40>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.378178, ..., -0.435127]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6ddc40>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.249686, ..., 1.006757]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6ddc40>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.627259, ..., -0.703344]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6ddc40>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.673   , ...,  0.634889]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6ddc40>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.170346, ..., -0.003907]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6ddc40>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.74249 , ..., 2.416095]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6ddc40>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([3.813068, ..., 0.397476]), <nibabel.nifti1.Nifti1Image object at 0x7ff5ab6ddc40>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7ff5abe61430>, <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42370>, { 'clean_kwargs': {},
  'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 0.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-0.292987, ..., 18.392956],
       ...,
       [-3.935719, ...,  0.602484]], dtype=float32),
array([[ 0.      , ...,  1.      ],
       ...,
       [-0.352245, ...,  1.      ]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.400515, ...,  2.602952]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42370>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.497881, ..., 0.140209]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42370>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.499281, ..., -0.49038 ]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42370>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.038187, ..., 0.57069 ]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42370>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.622503, ..., 1.679756]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42370>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.211798, ..., -1.574836]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42370>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.143717, ..., -0.364448]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42370>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.156681, ..., -1.209168]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d42370>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7ff5c7bf9c10>, <nibabel.nifti1.Nifti1Image object at 0x7ff5c7b9f700>, { 'clean_kwargs': {},
  'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 0.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-5.223948, ..., -5.959582],
       ...,
       [-7.677519, ..., 16.024363]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.00555 , ..., 1.955666]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c7b9f700>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.488905, ..., 1.063614]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c7b9f700>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.126069, ..., 0.347685]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c7b9f700>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.147577, ..., -0.722242]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c7b9f700>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.137613, ...,  1.219668]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c7b9f700>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.30493 , ...,  1.036247]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c7b9f700>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.64672 , ...,  0.256269]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c7b9f700>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.01524, ...,  0.32111]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c7b9f700>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7ff5c5d3c2e0>, <nibabel.nifti1.Nifti1Image object at 0x7ff5774affa0>, { 'clean_kwargs': {},
  'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 0.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-19.66533 , ...,  -6.299562],
       ...,
       [-24.647343, ...,   2.331865]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.497712, ..., -3.241636]), <nibabel.nifti1.Nifti1Image object at 0x7ff5774affa0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.884836, ..., -2.579124]), <nibabel.nifti1.Nifti1Image object at 0x7ff5774affa0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.361796, ..., -2.404684]), <nibabel.nifti1.Nifti1Image object at 0x7ff5774affa0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.15611 , ...,  0.717663]), <nibabel.nifti1.Nifti1Image object at 0x7ff5774affa0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.124367, ..., 1.85051 ]), <nibabel.nifti1.Nifti1Image object at 0x7ff5774affa0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.322726, ...,  0.187135]), <nibabel.nifti1.Nifti1Image object at 0x7ff5774affa0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.943745, ..., -1.223389]), <nibabel.nifti1.Nifti1Image object at 0x7ff5774affa0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.298717, ..., -1.02394 ]), <nibabel.nifti1.Nifti1Image object at 0x7ff5774affa0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7ff5ac19cfd0>, <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d220d0>, { 'clean_kwargs': {},
  'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 0.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-1.095605, ..., 16.449202],
       ...,
       [ 2.59974 , ..., -2.179998]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.028052, ..., -1.076144]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d220d0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.07071 , ...,  1.117228]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d220d0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.278396, ..., 0.666023]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d220d0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.606351, ..., -0.186859]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d220d0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.228201, ..., -0.299271]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d220d0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.760997, ..., 0.931553]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d220d0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.005349, ...,  0.835504]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d220d0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.093039, ..., -0.791928]), <nibabel.nifti1.Nifti1Image object at 0x7ff5c5d220d0>)
___________________________________________________________unmask - 0.1s, 0.0min

Generating a report

Since we have already computed the FirstLevelModel and have the contrast, we can quickly create a summary report.

from nilearn.image import mean_img
from nilearn.reporting import make_glm_report

mean_img_ = mean_img(func_filename, copy_header=True)
report = make_glm_report(
    glm,
    contrasts=conditions,
    bg_img=mean_img_,
)

report  # This report can be viewed in a notebook

Statistical Report for bottle, cat, chair, face, house, scissors, scrambledpix, shoe

First Level Model

Model details:

drift_model cosine
drift_order 1
high_pass (Hz) 0.01
hrf_model glover
noise_model ar1
signal_scaling 0
slice_time_ref 0.0
smoothing_fwhm 4
standardize False
subject_label None
t_r (s) 2.5
target_affine None
target_shape None

Design Matrix:

Plot of Design Matrix used in Run 1.

Contrasts

Plot of the contrast: bottle. Plot of the contrast: house. Plot of the contrast: chair. Plot of the contrast: scrambledpix. Plot of the contrast: face. Plot of the contrast: shoe. Plot of the contrast: cat. Plot of the contrast: scissors.

Mask

Model did not supply a mask image.

Stat Maps with Cluster Tables

bottle

Stat map plot for the contrast: bottle
Contrast Plot Plot of the contrast: bottle.

Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.291
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0

Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -54.25 13.12 5.62 6.49 98
2 29.75 -20.62 -24.38 6.49 836
2a 12.25 -20.62 -31.88 4.58
3 26.25 -20.62 -13.12 6.13 295
4 -36.75 -46.88 -46.88 6.11 147
5 43.75 -50.62 -5.62 6.03 1476
5a 47.25 -43.12 -1.88 4.74
5b 40.25 -28.12 -1.88 3.99
6 -1.75 -39.38 13.12 5.95 147
7 33.25 -43.12 -43.12 5.94 1181
7a 26.25 -35.62 -43.12 5.67
8 22.75 -54.38 -39.38 5.91 885
8a 8.75 -58.12 -39.38 4.15
9 -43.75 28.12 -9.38 5.90 196
10 -12.25 -24.38 -76.88 5.86 196
11 -19.25 -24.38 -43.12 5.80 590
11a -19.25 -31.88 -39.38 5.31
12 26.25 -46.88 -46.88 5.75 147
13 -57.75 -39.38 9.38 5.74 246
14 33.25 5.62 -13.12 5.69 442
14a 26.25 9.38 -16.88 5.46
15 22.75 -46.88 -61.88 5.68 442
16 19.25 -76.88 -13.12 5.60 590
17 22.75 -43.12 9.38 5.57 196
18 -29.75 9.38 -28.12 5.56 246
19 26.25 -69.38 -16.88 5.49 689
19a 36.75 -65.62 -13.12 4.91
19b 33.25 -58.12 -16.88 4.13
20 47.25 -24.38 -13.12 5.47 3248
20a 40.25 -35.62 -24.38 5.23
20b 33.25 -50.62 -20.62 4.80
20c 43.75 -16.88 -13.12 4.67
21 1.75 50.62 -16.88 5.46 295
22 -26.25 -16.88 -24.38 5.38 147
23 12.25 -84.38 -28.12 5.31 98
24 -29.75 -43.12 -50.62 5.30 442
25 1.75 -43.12 -1.88 5.29 98
26 -15.75 -28.12 -43.12 5.24 49
27 12.25 -13.12 -28.12 5.23 98
28 -47.25 -13.12 13.12 5.21 295
29 -19.25 -50.62 -39.38 5.19 639
29a -8.75 -35.62 -39.38 4.36
29b -12.25 -46.88 -39.38 3.96
30 -40.25 -35.62 -35.62 5.17 344
31 12.25 -28.12 -73.12 5.16 147
32 8.75 -50.62 -35.62 5.13 590
33 29.75 1.88 -9.38 5.11 98
34 19.25 -31.88 16.88 5.10 49
35 -1.75 -50.62 -39.38 5.08 98
36 -50.75 35.62 -16.88 5.08 196
37 -26.25 -54.38 46.88 5.06 98
38 -54.25 -31.88 -13.12 5.06 49
39 -8.75 -46.88 -65.62 5.05 295
40 1.75 -58.12 -24.38 5.05 98
41 -33.25 13.12 28.12 5.05 196
42 -12.25 5.62 -16.88 5.03 49
43 12.25 -58.12 -28.12 5.03 246
44 19.25 -43.12 -20.62 5.02 49
45 -26.25 -20.62 -13.12 5.02 98
46 -47.25 -39.38 -20.62 5.00 1082
46a -50.75 -39.38 -9.38 4.39
47 -40.25 -61.88 -16.88 4.99 295
48 5.25 -61.88 -20.62 4.97 246
49 -61.25 -5.62 20.62 4.96 98
50 40.25 16.88 -20.62 4.96 49
51 -26.25 -54.38 -46.88 4.95 49
52 -22.75 -58.12 -46.88 4.95 49
53 22.75 31.88 9.38 4.93 49
54 8.75 -16.88 46.88 4.93 49
55 -43.75 50.62 16.88 4.90 49
56 22.75 -20.62 -35.62 4.90 98
57 -29.75 -84.38 1.88 4.89 442
57a -36.75 -76.88 1.88 4.46
58 -40.25 -20.62 -31.88 4.83 49
59 -36.75 58.12 35.62 4.83 49
60 19.25 35.62 28.12 4.82 49
61 -1.75 -46.88 -24.38 4.81 147
62 33.25 -9.38 -58.12 4.80 49
63 -29.75 -58.12 -9.38 4.80 49
64 -36.75 -39.38 31.88 4.80 344
65 -15.75 -31.88 -61.88 4.80 49
66 -40.25 24.38 -9.38 4.78 49
67 33.25 31.88 -9.38 4.77 98
68 -1.75 -46.88 1.88 4.76 98
69 1.75 -1.88 31.88 4.76 98
70 -40.25 -28.12 -20.62 4.75 49
71 -33.25 -13.12 -13.12 4.75 344
72 -15.75 -1.88 -69.38 4.75 49
73 -47.25 24.38 20.62 4.75 196
74 26.25 31.88 -31.88 4.75 147
75 -12.25 -58.12 -16.88 4.74 49
76 -12.25 -5.62 28.12 4.74 246
77 36.75 -61.88 -5.62 4.74 98
78 -33.25 -73.12 31.88 4.72 49
79 12.25 43.12 -16.88 4.72 49
80 -1.75 -9.38 -20.62 4.71 49
81 -47.25 -54.38 -9.38 4.69 295
82 8.75 -91.88 5.62 4.68 49
83 -50.75 9.38 9.38 4.67 49
84 12.25 -54.38 -43.12 4.67 98
85 8.75 -20.62 -13.12 4.67 147
86 -22.75 16.88 5.62 4.66 98
87 29.75 -50.62 -50.62 4.66 196
88 -5.25 -13.12 -69.38 4.66 147
89 19.25 -35.62 69.38 4.65 49
90 -15.75 -39.38 -50.62 4.64 98
91 22.75 -35.62 54.38 4.64 295
91a 26.25 -43.12 54.38 4.06
92 -47.25 -9.38 5.62 4.63 246
93 -1.75 -54.38 -9.38 4.62 98
94 19.25 -39.38 -13.12 4.61 49
95 33.25 9.38 -24.38 4.61 98
96 22.75 46.88 -16.88 4.61 98
97 22.75 -16.88 -9.38 4.61 98
98 -36.75 20.62 35.62 4.60 344
99 -43.75 24.38 -1.88 4.59 196
100 15.75 50.62 58.12 4.59 98
101 19.25 16.88 28.12 4.59 49
102 -40.25 -65.62 -5.62 4.59 98
103 -29.75 -80.62 -9.38 4.58 49
104 -15.75 -76.88 28.12 4.57 196
105 -57.75 -16.88 1.88 4.57 49
106 22.75 9.38 16.88 4.57 246
107 -1.75 13.12 -20.62 4.57 98
108 40.25 -35.62 -43.12 4.56 49
109 -5.25 -31.88 58.12 4.55 49
110 12.25 24.38 61.88 4.55 98
111 26.25 28.12 -20.62 4.55 196
112 -57.75 5.62 13.12 4.55 492
112a -61.25 -1.88 9.38 4.19
112b -57.75 -9.38 9.38 4.13
113 19.25 -1.88 28.12 4.54 49
114 5.25 -76.88 24.38 4.54 49
115 33.25 20.62 -20.62 4.54 98
116 -15.75 16.88 43.12 4.53 147
117 -47.25 -28.12 5.62 4.51 49
118 -29.75 13.12 -13.12 4.51 295
118a -26.25 5.62 -13.12 4.20
119 12.25 -80.62 13.12 4.51 98
120 -8.75 84.38 20.62 4.50 147
121 15.75 -35.62 73.12 4.50 196
122 -15.75 -16.88 24.38 4.49 98
123 -15.75 9.38 -20.62 4.49 98
124 22.75 -28.12 69.38 4.49 98
125 12.25 -9.38 13.12 4.49 98
126 5.25 -43.12 -9.38 4.49 49
127 -1.75 -9.38 -46.88 4.49 196
128 -12.25 9.38 24.38 4.48 295
129 -26.25 13.12 46.88 4.48 49
130 -12.25 -13.12 -46.88 4.48 98
131 -1.75 -50.62 -1.88 4.47 49
132 1.75 24.38 31.88 4.47 49
133 -5.25 -24.38 -20.62 4.45 147
134 8.75 16.88 -20.62 4.45 49
135 15.75 -24.38 -35.62 4.45 344
136 -22.75 31.88 -24.38 4.45 98
137 -47.25 -28.12 43.12 4.44 49
138 -33.25 13.12 13.12 4.44 246
139 -47.25 -61.88 -5.62 4.44 49
140 -50.75 39.38 9.38 4.44 49
141 -50.75 -20.62 9.38 4.43 98
142 33.25 -24.38 -13.12 4.43 147
143 -15.75 -20.62 -58.12 4.43 98
144 -54.25 -46.88 -5.62 4.42 98
145 40.25 31.88 13.12 4.42 49
146 -43.75 16.88 58.12 4.42 49
147 -47.25 -24.38 -16.88 4.41 196
148 -12.25 -58.12 -46.88 4.40 49
149 -22.75 -9.38 13.12 4.40 49
150 22.75 16.88 5.62 4.39 196
151 50.75 1.88 43.12 4.39 98
152 -1.75 -39.38 1.88 4.39 295
153 -50.75 -16.88 24.38 4.38 49
154 36.75 50.62 1.88 4.38 98
155 -1.75 -54.38 -28.12 4.36 98
156 22.75 13.12 35.62 4.36 344
156a 12.25 20.62 35.62 4.14
157 -36.75 16.88 50.62 4.36 147
158 36.75 43.12 -28.12 4.35 49
159 33.25 24.38 39.38 4.35 49
160 36.75 5.62 35.62 4.34 147
161 29.75 -31.88 39.38 4.34 442
161a 40.25 -35.62 39.38 3.94
162 -15.75 -50.62 -1.88 4.33 49
163 -5.25 -46.88 -16.88 4.33 689
164 -1.75 -65.62 16.88 4.33 344
164a 5.25 -73.12 16.88 4.13
165 -47.25 35.62 16.88 4.33 295
166 -36.75 43.12 24.38 4.32 98
167 -54.25 -20.62 -9.38 4.32 49
168 -15.75 20.62 -46.88 4.32 98
169 47.25 -54.38 -16.88 4.31 49
170 -50.75 -50.62 20.62 4.31 49
171 -22.75 1.88 -1.88 4.31 49
172 -26.25 1.88 43.12 4.31 98
173 -15.75 -54.38 43.12 4.31 49
174 8.75 13.12 50.62 4.30 98
175 -15.75 -73.12 -13.12 4.30 49
176 54.25 -24.38 -5.62 4.29 196
177 -15.75 -1.88 16.88 4.29 49
178 -43.75 43.12 -28.12 4.28 98
179 68.25 -1.88 -9.38 4.28 49
180 -50.75 16.88 -1.88 4.28 49
181 19.25 -69.38 -13.12 4.28 98
182 12.25 50.62 -1.88 4.28 98
183 19.25 -9.38 20.62 4.28 49
184 -19.25 1.88 58.12 4.27 49
185 -29.75 -80.62 -24.38 4.27 49
186 19.25 -1.88 43.12 4.26 98
187 -19.25 -58.12 -9.38 4.26 49
188 68.25 -13.12 -9.38 4.25 98
189 19.25 -65.62 -24.38 4.25 147
190 -5.25 31.88 -20.62 4.25 147
191 -15.75 -46.88 -5.62 4.25 98
192 54.25 -9.38 20.62 4.25 246
193 -47.25 -58.12 13.12 4.25 49
194 50.75 -54.38 -9.38 4.23 49
195 -50.75 -5.62 -5.62 4.23 49
196 -22.75 -69.38 -13.12 4.23 147
197 19.25 16.88 13.12 4.23 147
198 15.75 9.38 43.12 4.22 98
199 1.75 13.12 9.38 4.22 49
200 12.25 -54.38 -54.38 4.22 49
201 15.75 -88.12 5.62 4.21 98
202 -40.25 5.62 -28.12 4.21 196
203 40.25 -31.88 54.38 4.21 98
204 -1.75 -1.88 1.88 4.20 246
205 -1.75 1.88 13.12 4.20 49
206 12.25 -9.38 5.62 4.20 49
207 12.25 24.38 -39.38 4.19 196
208 50.75 43.12 -5.62 4.19 49
209 -1.75 -58.12 -54.38 4.19 49
210 -47.25 -28.12 13.12 4.18 98
211 -26.25 50.62 5.62 4.18 147
212 15.75 -1.88 -16.88 4.17 196
213 54.25 1.88 35.62 4.17 98
214 -47.25 -43.12 9.38 4.17 147
215 40.25 5.62 -24.38 4.17 49
216 40.25 35.62 -1.88 4.17 49
217 22.75 46.88 13.12 4.16 49
218 50.75 -5.62 5.62 4.16 49
219 -40.25 -58.12 9.38 4.16 98
220 -26.25 -31.88 16.88 4.16 49
221 -22.75 -54.38 -61.88 4.16 98
222 -12.25 20.62 73.12 4.15 246
223 -36.75 43.12 1.88 4.15 196
224 19.25 -24.38 16.88 4.15 49
225 8.75 46.88 -5.62 4.14 49
226 19.25 -9.38 5.62 4.14 98
227 -26.25 -28.12 -31.88 4.13 49
228 54.25 -20.62 39.38 4.13 49
229 36.75 -35.62 -9.38 4.13 295
230 -36.75 -69.38 5.62 4.13 49
231 -19.25 61.88 5.62 4.13 49
232 26.25 -61.88 31.88 4.13 49
233 5.25 -28.12 -9.38 4.13 147
234 -54.25 1.88 13.12 4.13 49
235 -50.75 13.12 -5.62 4.12 49
236 -8.75 -46.88 -31.88 4.12 49
237 -15.75 13.12 50.62 4.12 49
238 -40.25 -46.88 1.88 4.10 49
239 -33.25 -35.62 -65.62 4.10 98
240 12.25 80.62 35.62 4.10 147
241 29.75 -31.88 -31.88 4.10 49
242 -33.25 1.88 -16.88 4.10 147
243 -29.75 -1.88 -24.38 4.09 98
244 -54.25 46.88 9.38 4.09 98
245 -36.75 -50.62 1.88 4.08 49
246 -43.75 -65.62 24.38 4.08 49
247 1.75 -5.62 -13.12 4.08 49
248 1.75 -5.62 -54.38 4.07 49
249 19.25 13.12 -1.88 4.07 98
250 -61.25 -20.62 13.12 4.07 49
251 22.75 -35.62 -20.62 4.06 147
252 29.75 -43.12 -58.12 4.06 49
253 26.25 24.38 13.12 4.06 147
254 29.75 -28.12 -24.38 4.06 49
255 -8.75 5.62 -24.38 4.06 49
256 -15.75 24.38 -9.38 4.05 49
257 -15.75 -1.88 -31.88 4.05 49
258 8.75 20.62 -24.38 4.05 49
259 -22.75 -1.88 -20.62 4.05 393
260 26.25 1.88 13.12 4.04 147
261 -33.25 28.12 31.88 4.04 246
262 29.75 -58.12 -46.88 4.04 49
263 5.25 -61.88 54.38 4.03 196
264 -54.25 13.12 20.62 4.03 196
265 40.25 9.38 -20.62 4.02 98
266 12.25 5.62 43.12 4.02 98
267 -54.25 5.62 -16.88 4.01 196
268 -33.25 -35.62 -9.38 4.01 98
269 -26.25 -73.12 -35.62 4.01 49
270 26.25 -9.38 13.12 4.01 246
271 47.25 43.12 9.38 4.00 49
272 1.75 -76.88 35.62 4.00 49
273 -33.25 -69.38 39.38 4.00 49
274 -15.75 -43.12 -43.12 4.00 98
275 -47.25 -65.62 1.88 4.00 196
276 -12.25 46.88 28.12 4.00 49
277 -1.75 -24.38 9.38 3.99 49
278 -1.75 58.12 13.12 3.99 49
279 -8.75 -46.88 -24.38 3.99 49
280 -19.25 13.12 28.12 3.99 49
281 29.75 65.62 43.12 3.98 49
282 40.25 -20.62 20.62 3.98 49
283 36.75 28.12 -35.62 3.97 49
284 -57.75 -31.88 -5.62 3.97 49
285 -19.25 24.38 31.88 3.97 49
286 -50.75 28.12 46.88 3.97 98
287 61.25 -31.88 39.38 3.97 49
288 -47.25 20.62 -13.12 3.96 49
289 47.25 16.88 -39.38 3.96 98
290 47.25 -54.38 -1.88 3.96 147
291 64.75 -43.12 5.62 3.95 49
292 -15.75 -31.88 -16.88 3.95 49
293 8.75 76.88 35.62 3.95 49
294 5.25 -88.12 -1.88 3.95 49
295 22.75 -69.38 1.88 3.95 147
296 12.25 9.38 28.12 3.94 147
297 36.75 -73.12 5.62 3.94 98
298 33.25 43.12 35.62 3.94 49
299 33.25 43.12 24.38 3.93 49
300 26.25 -20.62 -65.62 3.93 196
301 -22.75 -76.88 -16.88 3.93 49
302 54.25 -28.12 -9.38 3.93 98
303 12.25 -9.38 50.62 3.92 49
304 -12.25 -28.12 -50.62 3.92 196
305 15.75 -35.62 31.88 3.92 98
306 15.75 -1.88 -1.88 3.92 49
307 5.25 -28.12 73.12 3.92 49
308 -26.25 -61.88 35.62 3.92 98
309 5.25 -58.12 -54.38 3.92 49
310 -19.25 -76.88 -28.12 3.91 98
311 19.25 -76.88 -35.62 3.91 98
312 22.75 5.62 -1.88 3.91 49
313 -54.25 -20.62 -24.38 3.91 49
314 -1.75 -9.38 -5.62 3.91 49
315 15.75 -20.62 73.12 3.91 98
316 19.25 65.62 9.38 3.91 49
317 -64.75 -13.12 -24.38 3.91 49
318 -15.75 -5.62 61.88 3.91 147
319 -26.25 24.38 13.12 3.90 98
320 -19.25 -13.12 61.88 3.90 49
321 -22.75 13.12 -24.38 3.90 49
322 19.25 54.38 1.88 3.90 147
323 -15.75 54.38 54.38 3.90 98
324 1.75 -31.88 1.88 3.89 49
325 -33.25 39.38 54.38 3.89 49
326 -50.75 16.88 -16.88 3.89 147
327 33.25 50.62 50.62 3.89 49
328 5.25 -35.62 -58.12 3.89 98
329 -47.25 -28.12 28.12 3.89 49
330 12.25 69.38 5.62 3.89 49
331 5.25 -50.62 -20.62 3.88 98
332 15.75 88.12 9.38 3.88 49
333 -19.25 -50.62 16.88 3.88 49
334 -47.25 16.88 5.62 3.88 49
335 -47.25 -13.12 -54.38 3.88 98
336 -1.75 -16.88 -28.12 3.87 49
337 33.25 -28.12 65.62 3.87 98
338 19.25 35.62 1.88 3.87 98
339 33.25 5.62 28.12 3.86 49
340 -47.25 16.88 -24.38 3.86 49
341 -54.25 -24.38 -39.38 3.86 98
342 22.75 -16.88 43.12 3.86 49
343 -47.25 20.62 46.88 3.86 49
344 57.75 -20.62 28.12 3.85 49
345 36.75 1.88 20.62 3.85 98
346 -47.25 -39.38 16.88 3.85 49
347 50.75 -50.62 9.38 3.85 98
348 -54.25 -20.62 -50.62 3.85 49
349 36.75 -39.38 -69.38 3.85 49
350 15.75 -73.12 -31.88 3.85 49
351 -26.25 -35.62 -9.38 3.85 49
352 19.25 20.62 20.62 3.84 49
353 -19.25 -20.62 -35.62 3.84 98
354 12.25 -9.38 31.88 3.83 147
355 -33.25 -35.62 46.88 3.83 49
356 1.75 16.88 -39.38 3.83 49
357 -29.75 -46.88 -13.12 3.82 49
358 26.25 -65.62 46.88 3.82 49
359 1.75 -20.62 -35.62 3.82 49
360 26.25 5.62 5.62 3.82 98
361 -54.25 -39.38 1.88 3.81 246
361a -57.75 -46.88 -1.88 3.78
362 -40.25 16.88 24.38 3.81 98
363 -1.75 -43.12 -9.38 3.81 49
364 -5.25 -84.38 -20.62 3.81 49
365 33.25 -35.62 -5.62 3.80 49
366 1.75 -35.62 -61.88 3.78 49
367 -1.75 -28.12 20.62 3.78 98
368 1.75 -58.12 -13.12 3.78 49
369 -36.75 61.88 16.88 3.78 98
370 12.25 -46.88 -46.88 3.78 49
371 -12.25 -20.62 -46.88 3.78 49
372 29.75 16.88 35.62 3.78 49
373 26.25 13.12 9.38 3.77 98
374 15.75 -20.62 -20.62 3.77 49
375 -33.25 35.62 -24.38 3.77 49
376 8.75 -24.38 9.38 3.77 49
377 -22.75 -50.62 54.38 3.76 49
378 36.75 -73.12 -9.38 3.76 49
379 8.75 -73.12 35.62 3.76 49
380 -1.75 -16.88 24.38 3.76 49
381 -15.75 -16.88 -43.12 3.76 49
382 22.75 -73.12 -5.62 3.76 49
383 12.25 16.88 -50.62 3.76 49
384 -12.25 54.38 -9.38 3.75 49
385 8.75 -43.12 -35.62 3.75 49
386 22.75 24.38 43.12 3.75 98
387 19.25 43.12 -5.62 3.75 49
388 -12.25 -39.38 -5.62 3.75 147
389 5.25 -46.88 -39.38 3.75 49
390 43.75 -5.62 -13.12 3.74 49
391 47.25 13.12 -20.62 3.74 49
392 -54.25 -9.38 20.62 3.74 49
393 12.25 -35.62 9.38 3.74 49
394 -57.75 -1.88 -13.12 3.74 98
395 -33.25 -43.12 -28.12 3.74 98
396 47.25 13.12 5.62 3.74 49
397 1.75 -84.38 -16.88 3.74 49
398 40.25 28.12 -39.38 3.74 49
399 33.25 50.62 24.38 3.74 98
400 -1.75 -9.38 69.38 3.74 49
401 19.25 -16.88 16.88 3.74 49
402 -33.25 65.62 20.62 3.73 98
403 -29.75 16.88 -5.62 3.73 49
404 22.75 46.88 5.62 3.73 49
405 1.75 -16.88 -24.38 3.73 49
406 12.25 -65.62 -13.12 3.73 49
407 22.75 16.88 50.62 3.73 49
408 19.25 -50.62 -73.12 3.73 49
409 -33.25 -43.12 58.12 3.72 98
410 -47.25 -58.12 -28.12 3.72 49
411 19.25 9.38 20.62 3.72 49
412 -5.25 -43.12 69.38 3.72 98
413 -8.75 39.38 5.62 3.72 49
414 26.25 20.62 -24.38 3.71 98
415 -29.75 35.62 -1.88 3.71 49
416 33.25 43.12 -16.88 3.71 49
417 40.25 -58.12 5.62 3.71 98
418 40.25 -5.62 46.88 3.70 147
419 33.25 -9.38 -9.38 3.70 49
420 -68.25 -24.38 13.12 3.70 49
421 -15.75 -76.88 20.62 3.70 49
422 43.75 31.88 5.62 3.70 49
423 1.75 65.62 -16.88 3.70 98
424 26.25 -20.62 20.62 3.70 49
425 47.25 20.62 5.62 3.70 49
426 -29.75 20.62 -24.38 3.70 49
427 -47.25 46.88 20.62 3.70 49
428 15.75 1.88 35.62 3.69 49
429 40.25 -43.12 -28.12 3.69 49
430 -40.25 39.38 43.12 3.69 147
431 -54.25 -35.62 -5.62 3.69 49
432 -12.25 -20.62 -61.88 3.69 49
433 -50.75 13.12 -39.38 3.68 49
434 5.25 1.88 13.12 3.68 98
435 43.75 -69.38 -1.88 3.68 49
436 -22.75 -80.62 1.88 3.68 49
437 -36.75 -31.88 -46.88 3.68 49
438 26.25 -39.38 35.62 3.68 49
439 8.75 28.12 -24.38 3.67 49
440 15.75 -5.62 28.12 3.67 49
441 -15.75 5.62 65.62 3.67 98
442 5.25 -65.62 -13.12 3.67 98
443 54.25 -5.62 13.12 3.67 49
444 -33.25 46.88 35.62 3.67 49
445 33.25 -20.62 -9.38 3.67 49
446 36.75 -31.88 13.12 3.66 49
447 36.75 35.62 16.88 3.66 196
448 -36.75 -35.62 39.38 3.66 49
449 1.75 9.38 -16.88 3.65 49
450 -47.25 -13.12 35.62 3.65 49
451 -50.75 5.62 -9.38 3.65 49
452 19.25 -9.38 35.62 3.65 49
453 -5.25 -20.62 1.88 3.65 49
454 57.75 -39.38 5.62 3.64 49
455 -36.75 16.88 1.88 3.64 49
456 -36.75 -13.12 9.38 3.64 49
457 -1.75 24.38 -39.38 3.64 98
458 -8.75 -39.38 -31.88 3.64 49
459 12.25 20.62 -46.88 3.64 49
460 12.25 -1.88 -69.38 3.64 98
461 -1.75 -9.38 31.88 3.64 98
462 -26.25 -39.38 -43.12 3.64 98
463 33.25 -13.12 65.62 3.63 98
464 -15.75 -50.62 -31.88 3.63 196
465 -40.25 -16.88 -50.62 3.63 49
466 29.75 -16.88 58.12 3.62 49
467 43.75 24.38 -5.62 3.62 49
468 -1.75 -43.12 -31.88 3.62 49
469 -8.75 46.88 24.38 3.62 98
470 19.25 -61.88 35.62 3.61 49
471 -12.25 -16.88 -65.62 3.61 49
472 50.75 50.62 -1.88 3.61 49
473 33.25 -50.62 -28.12 3.61 49
474 -8.75 39.38 -28.12 3.61 49
475 -5.25 -31.88 1.88 3.61 49
476 22.75 -5.62 20.62 3.61 49
477 50.75 -43.12 9.38 3.61 49
478 -54.25 -28.12 -16.88 3.61 49
479 -12.25 16.88 20.62 3.61 98
480 -22.75 -5.62 -1.88 3.60 49
481 29.75 35.62 39.38 3.60 49
482 -47.25 -24.38 -5.62 3.60 49
483 12.25 61.88 5.62 3.60 49
484 -43.75 43.12 5.62 3.59 49
485 33.25 -28.12 58.12 3.59 49
486 19.25 28.12 31.88 3.59 49
487 -19.25 -61.88 20.62 3.59 49
488 57.75 35.62 28.12 3.58 98
489 33.25 -35.62 -35.62 3.58 49
490 -19.25 -9.38 -65.62 3.58 49
491 -40.25 -46.88 -5.62 3.58 49
492 5.25 -80.62 -1.88 3.58 49
493 -15.75 -5.62 1.88 3.58 98
494 26.25 -61.88 -16.88 3.58 98
495 29.75 -1.88 -20.62 3.58 49
496 5.25 5.62 -69.38 3.57 49
497 5.25 -9.38 -20.62 3.57 49
498 15.75 -13.12 -73.12 3.57 49
499 -57.75 -9.38 16.88 3.57 98
500 -1.75 1.88 69.38 3.56 49
501 -43.75 13.12 13.12 3.56 98
502 26.25 31.88 43.12 3.56 49
503 -33.25 73.12 20.62 3.56 49
504 36.75 20.62 31.88 3.56 49
505 -12.25 13.12 58.12 3.56 49
506 -43.75 58.12 20.62 3.56 49
507 -29.75 -24.38 -9.38 3.55 49
508 -33.25 -16.88 -5.62 3.55 49
509 -12.25 5.62 35.62 3.55 147
510 19.25 -31.88 -16.88 3.55 49
511 -61.25 -16.88 9.38 3.55 49
512 -54.25 -9.38 -5.62 3.55 98
513 50.75 -13.12 5.62 3.54 49
514 -26.25 -35.62 54.38 3.54 49
515 26.25 -54.38 -13.12 3.54 98
516 -1.75 46.88 54.38 3.54 49
517 47.25 28.12 -39.38 3.54 49
518 -29.75 43.12 39.38 3.54 49
519 -47.25 43.12 9.38 3.54 49
520 57.75 -13.12 16.88 3.54 49
521 -40.25 13.12 -43.12 3.53 49
522 22.75 69.38 5.62 3.53 98
523 -12.25 -76.88 -9.38 3.53 49
524 -1.75 -50.62 -16.88 3.52 49
525 -5.25 43.12 -16.88 3.52 49
526 -5.25 1.88 1.88 3.52 49
527 -22.75 1.88 28.12 3.52 49
528 -1.75 9.38 9.38 3.52 49
529 22.75 -54.38 61.88 3.52 49
530 19.25 -84.38 -20.62 3.52 49
531 40.25 -28.12 -69.38 3.52 98
532 40.25 39.38 28.12 3.52 49
533 15.75 20.62 43.12 3.51 49
534 22.75 -24.38 1.88 3.51 49
535 22.75 -1.88 5.62 3.51 49
536 54.25 -16.88 35.62 3.51 98
537 -47.25 -1.88 -20.62 3.51 49
538 43.75 9.38 -39.38 3.51 49
539 19.25 -58.12 -13.12 3.51 49
540 1.75 -58.12 9.38 3.50 49
541 -29.75 -65.62 -20.62 3.50 49
542 -50.75 -9.38 -13.12 3.50 49
543 15.75 -73.12 -20.62 3.50 49
544 40.25 65.62 31.88 3.50 49
545 26.25 -5.62 -1.88 3.50 49
546 40.25 -39.38 -13.12 3.50 49
547 -8.75 -13.12 5.62 3.50 49
548 5.25 -16.88 69.38 3.49 49
549 19.25 46.88 39.38 3.49 49
550 26.25 -20.62 65.62 3.49 49
551 -29.75 -80.62 20.62 3.48 49
552 61.25 -35.62 35.62 3.48 49
553 36.75 50.62 -16.88 3.48 49
554 40.25 -35.62 50.62 3.48 49
555 -1.75 -5.62 -73.12 3.48 49
556 19.25 -31.88 -54.38 3.47 49
557 -33.25 1.88 31.88 3.47 98
558 47.25 5.62 31.88 3.47 49
559 15.75 1.88 58.12 3.47 98
560 -36.75 -46.88 9.38 3.47 98
561 15.75 -24.38 -73.12 3.47 49
562 -36.75 61.88 9.38 3.47 49
563 29.75 43.12 16.88 3.46 49
564 -8.75 39.38 31.88 3.46 49
565 -40.25 -69.38 31.88 3.46 49
566 5.25 -50.62 -5.62 3.46 49
567 -47.25 1.88 -28.12 3.45 49
568 12.25 69.38 -13.12 3.45 49
569 33.25 39.38 28.12 3.45 49
570 -43.75 35.62 31.88 3.45 98
571 -1.75 20.62 -16.88 3.45 147
572 47.25 16.88 39.38 3.45 49
573 36.75 -46.88 9.38 3.45 49
574 -19.25 -50.62 -46.88 3.45 49
575 36.75 -54.38 -28.12 3.44 49
576 1.75 28.12 -5.62 3.44 49
577 26.25 1.88 -13.12 3.44 49
578 -1.75 -28.12 58.12 3.44 49
579 19.25 -61.88 -46.88 3.44 98
580 12.25 5.62 13.12 3.44 49
581 -64.75 20.62 5.62 3.44 49
582 40.25 -9.38 -31.88 3.44 49
583 -1.75 -9.38 -28.12 3.43 49
584 5.25 -16.88 -20.62 3.43 49
585 19.25 -13.12 28.12 3.43 49
586 -64.75 -35.62 -1.88 3.43 49
587 1.75 -1.88 -20.62 3.43 49
588 33.25 -24.38 -58.12 3.43 49
589 -5.25 -73.12 28.12 3.43 49
590 33.25 -43.12 -35.62 3.43 49
591 -19.25 -16.88 9.38 3.42 49
592 26.25 80.62 24.38 3.42 49
593 8.75 13.12 16.88 3.42 49
594 54.25 -28.12 24.38 3.42 49
595 -22.75 -28.12 31.88 3.42 49
596 54.25 -28.12 31.88 3.42 49
597 1.75 84.38 1.88 3.42 49
598 47.25 31.88 -24.38 3.42 49
599 -12.25 -50.62 -24.38 3.42 49
600 -29.75 24.38 5.62 3.41 49
601 -36.75 -5.62 -20.62 3.41 49
602 -15.75 -73.12 39.38 3.41 49
603 -15.75 35.62 5.62 3.41 49
604 47.25 -31.88 -39.38 3.41 98
605 26.25 -16.88 -58.12 3.41 49
606 12.25 -9.38 -24.38 3.41 49
607 -19.25 -43.12 31.88 3.41 49
608 -19.25 -31.88 -69.38 3.41 49
609 -43.75 50.62 28.12 3.40 49
610 40.25 13.12 -46.88 3.40 49
611 19.25 -46.88 31.88 3.40 49
612 12.25 -9.38 43.12 3.40 49
613 40.25 -9.38 28.12 3.40 49
614 33.25 5.62 50.62 3.40 49
615 15.75 -16.88 5.62 3.40 49
616 22.75 54.38 16.88 3.40 49
617 -22.75 -54.38 39.38 3.40 49
618 50.75 -20.62 -43.12 3.39 49
619 12.25 -1.88 24.38 3.39 49
620 -29.75 -20.62 -69.38 3.39 49
621 12.25 -35.62 -16.88 3.39 49
622 12.25 -84.38 -5.62 3.39 49
623 -29.75 -1.88 -1.88 3.38 49
624 -36.75 -50.62 -16.88 3.38 49
625 -5.25 -31.88 -13.12 3.38 49
626 26.25 -1.88 20.62 3.38 49
627 -1.75 5.62 -39.38 3.38 49
628 -50.75 1.88 9.38 3.38 49
629 -22.75 24.38 20.62 3.38 49
630 22.75 39.38 20.62 3.38 49
631 19.25 -61.88 -20.62 3.38 49
632 -12.25 16.88 -50.62 3.38 49
633 -8.75 -9.38 -20.62 3.38 49
634 8.75 24.38 39.38 3.38 49
635 40.25 -35.62 -58.12 3.38 98
636 -33.25 -1.88 13.12 3.38 49
637 -50.75 -1.88 16.88 3.37 98
638 -36.75 -16.88 -46.88 3.37 49
639 47.25 -20.62 20.62 3.37 49
640 22.75 -9.38 43.12 3.37 49
641 1.75 1.88 -16.88 3.36 49
642 19.25 -28.12 -24.38 3.36 49
643 -22.75 -28.12 -65.62 3.36 49
644 -22.75 -28.12 -13.12 3.36 98
645 -19.25 -43.12 46.88 3.36 49
646 -5.25 76.88 5.62 3.36 49
647 68.25 -28.12 16.88 3.36 49
648 -8.75 -35.62 65.62 3.36 49
649 -33.25 -24.38 -65.62 3.35 49
650 -22.75 54.38 -20.62 3.35 49
651 8.75 -5.62 -24.38 3.35 49
652 5.25 46.88 13.12 3.35 49
653 -26.25 -43.12 54.38 3.35 49
654 15.75 35.62 5.62 3.35 49
655 -33.25 -58.12 -1.88 3.35 49
656 -8.75 -54.38 -31.88 3.35 49
657 26.25 28.12 -43.12 3.34 98
658 -29.75 39.38 35.62 3.34 49
659 8.75 -76.88 9.38 3.34 49
660 -29.75 -1.88 -46.88 3.34 49
661 12.25 -35.62 65.62 3.34 49
662 54.25 1.88 9.38 3.34 49
663 -22.75 20.62 -1.88 3.34 49
664 33.25 -76.88 -28.12 3.34 49
665 -1.75 -1.88 -5.62 3.34 49
666 -26.25 16.88 9.38 3.33 49
667 47.25 -35.62 16.88 3.33 49
668 -15.75 -46.88 -24.38 3.33 49
669 -47.25 -61.88 20.62 3.33 49
670 -29.75 -46.88 -28.12 3.33 49
671 -22.75 -54.38 -35.62 3.33 49
672 -5.25 1.88 -58.12 3.33 49
673 5.25 -61.88 -46.88 3.33 49
674 33.25 -46.88 54.38 3.33 49
675 26.25 -80.62 1.88 3.33 49
676 -43.75 -35.62 -1.88 3.33 49
677 36.75 -24.38 -31.88 3.33 49
678 26.25 -5.62 -13.12 3.32 49
679 -36.75 -73.12 -9.38 3.32 49
680 -47.25 -1.88 -13.12 3.32 49
681 33.25 -35.62 -46.88 3.32 49
682 -50.75 13.12 35.62 3.32 49
683 -12.25 -13.12 -73.12 3.32 49
684 -50.75 -58.12 1.88 3.32 49
685 8.75 20.62 -35.62 3.32 49
686 22.75 20.62 16.88 3.32 49
687 -36.75 -46.88 -24.38 3.32 98
688 -5.25 -54.38 -54.38 3.32 49
689 -29.75 9.38 61.88 3.31 49
690 15.75 -46.88 20.62 3.31 49
691 19.25 -9.38 -5.62 3.31 49
692 15.75 -39.38 -35.62 3.31 49
693 36.75 -24.38 9.38 3.31 49
694 -1.75 -16.88 -58.12 3.31 49
695 -19.25 -50.62 39.38 3.31 49
696 -19.25 -54.38 13.12 3.31 49
697 54.25 -16.88 -1.88 3.30 49
698 -12.25 20.62 13.12 3.30 49
699 -36.75 9.38 54.38 3.30 49
700 29.75 -50.62 54.38 3.30 49
701 29.75 -46.88 -31.88 3.30 49
702 -12.25 -35.62 -58.12 3.30 49
703 15.75 -16.88 54.38 3.30 49
704 -26.25 50.62 28.12 3.30 49
705 61.25 1.88 24.38 3.30 49
706 15.75 -16.88 -58.12 3.30 49
707 1.75 -69.38 46.88 3.29 49
708 -8.75 54.38 43.12 3.29 49
709 -26.25 -31.88 -58.12 3.29 49
710 5.25 -73.12 -16.88 3.29 49
711 15.75 28.12 13.12 3.29 49
712 -12.25 13.12 65.62 3.29 49

house

Stat map plot for the contrast: house
Contrast Plot Plot of the contrast: house.

Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.291
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0

Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -22.75 -39.38 -1.88 5.50 393
2 22.75 20.62 9.38 5.43 442
2a 22.75 24.38 16.88 4.16
3 -22.75 24.38 13.12 5.29 98
4 22.75 13.12 20.62 5.25 98
5 47.25 -54.38 -16.88 5.20 98
6 33.25 -43.12 -35.62 4.65 295
7 -29.75 28.12 5.62 4.60 49
8 22.75 -5.62 20.62 4.57 49
9 -33.25 -58.12 35.62 4.53 49
10 36.75 -54.38 -20.62 4.52 49
11 12.25 24.38 20.62 4.51 147
12 -15.75 24.38 9.38 4.48 492
12a -15.75 28.12 16.88 4.03
13 -50.75 9.38 -28.12 4.44 49
14 -40.25 -58.12 28.12 4.41 98
15 22.75 -31.88 1.88 4.39 49
16 22.75 -43.12 -31.88 4.38 49
17 33.25 5.62 -39.38 4.37 49
18 26.25 5.62 9.38 4.35 49
19 1.75 13.12 -16.88 4.33 49
20 8.75 -16.88 31.88 4.33 49
21 -22.75 16.88 5.62 4.27 98
22 33.25 28.12 28.12 4.25 49
23 26.25 9.38 -31.88 4.23 49
24 -22.75 5.62 24.38 4.23 295
25 1.75 -46.88 -5.62 4.21 49
26 -26.25 39.38 46.88 4.21 98
27 19.25 5.62 43.12 4.21 98
28 43.75 -1.88 20.62 4.19 98
29 8.75 -24.38 24.38 4.16 49
30 19.25 -13.12 24.38 4.16 98
31 15.75 -39.38 13.12 4.13 49
32 -12.25 -16.88 -20.62 4.12 49
33 -29.75 16.88 9.38 4.11 49
34 -22.75 20.62 20.62 4.10 147
35 -12.25 -28.12 -76.88 4.08 49
36 26.25 -61.88 31.88 4.07 49
37 15.75 -54.38 5.62 4.05 49
38 -54.25 -20.62 -9.38 4.03 49
39 -15.75 -46.88 20.62 4.02 98
40 26.25 -1.88 13.12 4.00 49
41 -15.75 -35.62 -1.88 3.99 147
42 -12.25 -43.12 -16.88 3.97 49
43 -29.75 -31.88 35.62 3.96 49
44 -8.75 35.62 43.12 3.90 49
45 26.25 13.12 13.12 3.88 147
46 8.75 -9.38 31.88 3.88 98
47 5.25 -43.12 -1.88 3.87 98
48 -15.75 -50.62 24.38 3.87 49
49 -22.75 -9.38 -65.62 3.86 49
50 -15.75 -24.38 -9.38 3.85 98
51 -26.25 -50.62 -46.88 3.84 49
52 -8.75 -43.12 -9.38 3.84 49
53 22.75 -43.12 9.38 3.83 49
54 -8.75 -28.12 5.62 3.82 49
55 -12.25 -43.12 -50.62 3.82 49
56 -15.75 -31.88 -50.62 3.82 49
57 22.75 -39.38 46.88 3.81 49
58 22.75 -76.88 20.62 3.81 49
59 -40.25 -69.38 20.62 3.80 49
60 -29.75 -9.38 -31.88 3.78 49
61 -15.75 -28.12 -5.62 3.78 49
62 -12.25 -39.38 46.88 3.77 49
63 5.25 31.88 50.62 3.77 49
64 -22.75 -58.12 24.38 3.75 49
65 -15.75 16.88 13.12 3.75 49
66 -1.75 -61.88 -39.38 3.75 49
67 50.75 -31.88 -50.62 3.74 49
68 15.75 28.12 13.12 3.73 49
69 50.75 50.62 -1.88 3.73 49
70 33.25 -50.62 -24.38 3.72 147
71 29.75 1.88 13.12 3.71 49
72 1.75 31.88 -13.12 3.69 49
73 26.25 9.38 -24.38 3.69 49
74 15.75 -28.12 -5.62 3.68 49
75 -43.75 58.12 9.38 3.67 49
76 -8.75 5.62 28.12 3.67 98
77 26.25 -13.12 54.38 3.66 49
78 33.25 -76.88 -24.38 3.64 49
79 -33.25 -24.38 35.62 3.64 49
80 19.25 -76.88 -16.88 3.63 98
81 -40.25 50.62 1.88 3.63 49
82 40.25 31.88 -24.38 3.62 49
83 33.25 43.12 50.62 3.62 49
84 26.25 -24.38 -69.38 3.62 49
85 33.25 9.38 1.88 3.62 49
86 -26.25 20.62 -1.88 3.62 49
87 22.75 -65.62 20.62 3.60 49
88 -15.75 20.62 1.88 3.60 49
89 -15.75 20.62 20.62 3.59 49
90 -33.25 -73.12 -31.88 3.58 49
91 22.75 -73.12 -13.12 3.58 49
92 57.75 -54.38 1.88 3.57 49
93 29.75 -43.12 -20.62 3.56 49
94 -22.75 -24.38 46.88 3.56 49
95 40.25 -13.12 -43.12 3.56 49
96 -29.75 -13.12 -20.62 3.55 49
97 -40.25 -28.12 -24.38 3.55 49
98 -43.75 -9.38 39.38 3.55 49
99 -26.25 -50.62 46.88 3.54 49
100 -26.25 13.12 16.88 3.54 49
101 -29.75 50.62 20.62 3.54 49
102 -22.75 -13.12 46.88 3.54 49
103 -36.75 24.38 13.12 3.53 49
104 22.75 -9.38 13.12 3.53 49
105 -12.25 1.88 -61.88 3.52 98
106 5.25 9.38 39.38 3.52 49
107 29.75 -54.38 -24.38 3.51 49
108 22.75 -43.12 31.88 3.51 49
109 5.25 -65.62 54.38 3.50 49
110 -50.75 31.88 9.38 3.49 49
111 -12.25 9.38 5.62 3.49 49
112 22.75 1.88 20.62 3.48 49
113 12.25 -5.62 -5.62 3.48 49
114 50.75 -43.12 -1.88 3.47 49
115 15.75 -1.88 69.38 3.46 49
116 26.25 -73.12 31.88 3.46 49
117 36.75 -61.88 -13.12 3.46 49
118 -1.75 39.38 -20.62 3.45 98
119 -26.25 -54.38 43.12 3.45 49
120 29.75 -46.88 -24.38 3.45 49
121 -57.75 20.62 13.12 3.45 49
122 -15.75 -50.62 -9.38 3.44 49
123 -26.25 -20.62 16.88 3.44 49
124 19.25 24.38 5.62 3.44 49
125 -26.25 1.88 13.12 3.44 49
126 -36.75 -61.88 35.62 3.44 49
127 61.25 -1.88 13.12 3.43 49
128 57.75 -16.88 16.88 3.43 49
129 15.75 1.88 58.12 3.43 49
130 -36.75 -65.62 -16.88 3.43 49
131 22.75 -46.88 -20.62 3.42 49
132 12.25 -31.88 -73.12 3.42 49
133 22.75 -16.88 16.88 3.42 49
134 33.25 54.38 28.12 3.41 49
135 -33.25 9.38 5.62 3.41 49
136 43.75 35.62 46.88 3.41 49
137 15.75 -28.12 24.38 3.41 49
138 -26.25 -76.88 -9.38 3.39 49
139 22.75 -13.12 20.62 3.39 49
140 -40.25 -46.88 39.38 3.39 49
141 -33.25 61.88 39.38 3.38 49
142 -36.75 -69.38 31.88 3.38 98
143 8.75 -61.88 -50.62 3.38 49
144 22.75 5.62 24.38 3.38 49
145 5.25 -20.62 -13.12 3.38 49
146 19.25 -35.62 -28.12 3.38 49
147 -15.75 -61.88 43.12 3.37 49
148 -33.25 13.12 -1.88 3.37 49
149 22.75 -46.88 -5.62 3.37 49
150 -15.75 -20.62 -28.12 3.37 49
151 12.25 -13.12 54.38 3.37 49
152 29.75 5.62 39.38 3.36 49
153 26.25 -20.62 24.38 3.36 49
154 15.75 -73.12 -28.12 3.36 49
155 -8.75 61.88 -16.88 3.36 49
156 -36.75 -50.62 -16.88 3.36 49
157 -64.75 -24.38 -20.62 3.35 49
158 -57.75 16.88 5.62 3.34 49
159 -15.75 58.12 5.62 3.34 49
160 -26.25 16.88 50.62 3.34 49
161 -15.75 -65.62 46.88 3.34 49
162 40.25 -39.38 13.12 3.34 49
163 36.75 -13.12 -31.88 3.34 49
164 26.25 -16.88 -9.38 3.34 49
165 15.75 16.88 50.62 3.34 49
166 -54.25 -13.12 -1.88 3.34 49
167 40.25 -50.62 -58.12 3.34 49
168 -8.75 -24.38 1.88 3.33 49
169 -22.75 -16.88 24.38 3.33 49
170 -1.75 28.12 61.88 3.33 49
171 26.25 -58.12 -16.88 3.33 98
172 8.75 -39.38 1.88 3.33 49
173 54.25 9.38 -31.88 3.33 49
174 -22.75 35.62 -24.38 3.32 49
175 8.75 -80.62 -5.62 3.32 49
176 40.25 -16.88 -46.88 3.32 49
177 -15.75 -5.62 -13.12 3.31 49
178 -47.25 -76.88 9.38 3.31 49
179 -40.25 -1.88 24.38 3.30 49
180 33.25 -28.12 -13.12 3.30 49
181 8.75 -58.12 -24.38 3.29 49
182 19.25 -50.62 -13.12 3.29 49
183 12.25 -73.12 -13.12 3.29 49

chair

Stat map plot for the contrast: chair
Contrast Plot Plot of the contrast: chair.

Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.291
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0

Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 40.25 -46.88 13.12 5.02 147
2 12.25 35.62 -5.62 4.88 196
3 -50.75 39.38 16.88 4.65 49
4 -15.75 -1.88 -16.88 4.21 49
5 33.25 -58.12 -1.88 4.16 49
6 -36.75 -76.88 1.88 4.15 49
7 -29.75 20.62 46.88 4.12 49
8 -54.25 -43.12 46.88 4.09 49
9 12.25 28.12 -16.88 4.08 49
10 12.25 5.62 -24.38 4.06 98
11 33.25 43.12 -16.88 3.99 49
12 33.25 -58.12 -16.88 3.97 49
13 -22.75 -43.12 -31.88 3.97 98
14 8.75 -35.62 -35.62 3.94 49
15 26.25 -46.88 -35.62 3.93 49
16 -5.25 43.12 50.62 3.89 49
17 12.25 16.88 -20.62 3.88 49
18 -36.75 -61.88 43.12 3.85 49
19 -50.75 -39.38 -1.88 3.83 147
20 -15.75 20.62 13.12 3.81 49
21 -22.75 1.88 5.62 3.78 49
22 -57.75 -9.38 -1.88 3.73 49
23 -1.75 5.62 31.88 3.69 49
24 -57.75 13.12 1.88 3.67 98
25 -36.75 -46.88 50.62 3.65 49
26 33.25 13.12 -1.88 3.64 49
27 36.75 -24.38 20.62 3.62 49
28 54.25 20.62 5.62 3.61 49
29 22.75 24.38 16.88 3.61 49
30 33.25 -20.62 -58.12 3.55 49
31 -22.75 -9.38 20.62 3.53 49
32 -22.75 24.38 13.12 3.53 49
33 29.75 -43.12 -35.62 3.52 49
34 12.25 16.88 -50.62 3.51 49
35 12.25 -1.88 69.38 3.51 49
36 -15.75 -39.38 -54.38 3.50 49
37 26.25 -69.38 31.88 3.50 98
38 -22.75 -31.88 -69.38 3.49 49
39 36.75 -1.88 28.12 3.48 49
40 -22.75 50.62 9.38 3.47 49
41 -22.75 -39.38 -28.12 3.47 49
42 26.25 16.88 16.88 3.46 49
43 -22.75 9.38 24.38 3.46 49
44 33.25 13.12 61.88 3.44 49
45 19.25 20.62 20.62 3.43 98
46 12.25 9.38 -1.88 3.43 49
47 36.75 20.62 -43.12 3.42 49
48 19.25 76.88 31.88 3.41 49
49 1.75 24.38 -39.38 3.40 49
50 29.75 9.38 -16.88 3.36 49
51 -26.25 -1.88 -50.62 3.36 49
52 33.25 9.38 -13.12 3.35 49
53 -68.25 1.88 5.62 3.33 49
54 -15.75 -39.38 -24.38 3.33 49
55 5.25 -1.88 31.88 3.33 49
56 22.75 -46.88 -24.38 3.32 49
57 22.75 -24.38 -61.88 3.31 49
58 43.75 -28.12 -13.12 3.30 49

scrambledpix

Stat map plot for the contrast: scrambledpix
Contrast Plot Plot of the contrast: scrambledpix.

Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.291
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0

Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 1.75 24.38 -13.12 5.06 49
2 -29.75 -61.88 -31.88 4.96 49
3 -22.75 -46.88 43.12 4.91 98
4 -15.75 61.88 -9.38 4.69 147
5 5.25 43.12 -28.12 4.49 49
6 -22.75 -9.38 20.62 4.29 49
7 -1.75 -35.62 5.62 4.17 98
8 50.75 16.88 -28.12 4.12 147
9 -1.75 5.62 31.88 4.04 49
10 40.25 -16.88 -39.38 3.93 49
11 -15.75 -43.12 -16.88 3.85 49
12 -64.75 -31.88 39.38 3.77 49
13 -1.75 -46.88 -9.38 3.75 49
14 50.75 5.62 -35.62 3.68 49
15 -22.75 -54.38 -9.38 3.64 147
16 22.75 -24.38 46.88 3.59 49
17 54.25 -9.38 16.88 3.55 49
18 19.25 43.12 13.12 3.51 49
19 22.75 46.88 -5.62 3.50 49
20 -29.75 -65.62 20.62 3.46 49
21 -22.75 -28.12 39.38 3.42 49
22 33.25 -20.62 43.12 3.40 49
23 -40.25 -16.88 -54.38 3.39 49
24 -26.25 -69.38 39.38 3.39 49
25 15.75 -39.38 -31.88 3.38 49
26 57.75 13.12 -9.38 3.38 49
27 -5.25 -50.62 61.88 3.33 49
28 26.25 -20.62 43.12 3.33 49
29 -22.75 -9.38 -65.62 3.31 49
30 -26.25 -65.62 16.88 3.31 49

face

Stat map plot for the contrast: face
Contrast Plot Plot of the contrast: face.

Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.291
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0

Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -50.75 -50.62 13.12 5.43 196
1a -47.25 -58.12 13.12 4.43
2 -47.25 -43.12 -35.62 5.08 49
3 -33.25 50.62 16.88 4.92 442
3a -40.25 46.88 13.12 4.22
4 -47.25 -39.38 16.88 4.89 98
5 -12.25 -58.12 -16.88 4.84 98
6 68.25 -9.38 -9.38 4.82 147
7 -36.75 31.88 16.88 4.66 147
8 -1.75 -39.38 5.62 4.64 98
9 -15.75 13.12 73.12 4.60 196
10 33.25 -61.88 -13.12 4.57 196
11 -43.75 -31.88 35.62 4.46 98
12 1.75 -43.12 -1.88 4.45 49
13 -47.25 24.38 20.62 4.45 49
14 40.25 -39.38 -24.38 4.30 49
15 -22.75 39.38 13.12 4.27 49
16 22.75 -50.62 -24.38 4.27 49
17 -47.25 -50.62 20.62 4.22 49
18 -47.25 -54.38 -9.38 4.19 49
19 -15.75 -13.12 24.38 4.18 98
20 -29.75 24.38 -13.12 4.15 147
21 -40.25 -43.12 -16.88 4.14 49
22 40.25 -43.12 -9.38 4.13 49
23 -1.75 28.12 61.88 4.07 98
24 -1.75 -58.12 -16.88 4.07 49
25 -57.75 -16.88 1.88 4.06 98
26 29.75 -46.88 35.62 4.02 49
27 5.25 -58.12 -24.38 4.00 393
28 -36.75 -31.88 -46.88 4.00 49
29 -8.75 13.12 65.62 3.99 49
30 33.25 -46.88 -39.38 3.99 98
31 1.75 -43.12 -16.88 3.98 196
32 -36.75 31.88 35.62 3.95 442
33 22.75 -1.88 58.12 3.94 98
34 -19.25 -73.12 39.38 3.93 98
35 1.75 24.38 -13.12 3.92 49
36 -43.75 -43.12 -9.38 3.90 98
37 -8.75 -39.38 -5.62 3.87 49
38 -47.25 -46.88 9.38 3.86 98
39 5.25 20.62 65.62 3.86 49
40 40.25 43.12 16.88 3.85 49
41 -26.25 -43.12 -43.12 3.83 49
42 19.25 -46.88 -20.62 3.81 196
43 -36.75 -43.12 39.38 3.80 147
44 -8.75 -28.12 61.88 3.79 49
45 -8.75 -46.88 -31.88 3.79 49
46 43.75 35.62 39.38 3.76 147
47 -22.75 -46.88 -50.62 3.75 49
48 -47.25 -61.88 -5.62 3.74 49
49 -47.25 -28.12 28.12 3.74 49
50 -29.75 28.12 13.12 3.73 49
51 29.75 -46.88 -31.88 3.73 49
52 19.25 -16.88 39.38 3.72 49
53 -47.25 -9.38 13.12 3.71 49
54 -47.25 -46.88 -31.88 3.68 49
55 33.25 50.62 20.62 3.67 49
56 -29.75 -13.12 5.62 3.67 49
57 36.75 -46.88 9.38 3.66 49
58 -50.75 20.62 20.62 3.65 49
59 -47.25 -16.88 -35.62 3.61 49
60 36.75 -35.62 -20.62 3.61 49
61 33.25 -50.62 -20.62 3.61 147
62 33.25 -54.38 43.12 3.60 49
63 5.25 -24.38 -20.62 3.59 49
64 -47.25 -46.88 16.88 3.59 49
65 -57.75 -9.38 -1.88 3.58 49
66 -12.25 -76.88 28.12 3.58 49
67 22.75 31.88 28.12 3.57 49
68 -36.75 5.62 43.12 3.57 49
69 -33.25 39.38 54.38 3.56 49
70 -1.75 -46.88 -9.38 3.56 49
71 26.25 -28.12 24.38 3.56 49
72 29.75 -50.62 -39.38 3.56 49
73 40.25 28.12 39.38 3.56 98
74 -12.25 -39.38 58.12 3.55 49
75 29.75 -54.38 46.88 3.55 49
76 -50.75 -43.12 1.88 3.53 147
77 -36.75 20.62 50.62 3.53 49
78 19.25 -1.88 50.62 3.52 49
79 -57.75 31.88 31.88 3.52 49
80 -43.75 -43.12 46.88 3.51 49
81 -29.75 5.62 58.12 3.51 49
82 26.25 1.88 13.12 3.51 49
83 5.25 -65.62 13.12 3.49 49
84 29.75 -46.88 -43.12 3.47 49
85 33.25 -43.12 -24.38 3.47 49
86 -47.25 -16.88 -43.12 3.46 49
87 -36.75 -46.88 50.62 3.45 49
88 -54.25 -9.38 -31.88 3.44 49
89 -5.25 -58.12 -13.12 3.44 49
90 -33.25 31.88 46.88 3.43 49
91 -26.25 -84.38 -9.38 3.43 98
92 12.25 28.12 61.88 3.42 49
93 -15.75 16.88 16.88 3.41 49
94 -33.25 16.88 50.62 3.41 49
95 -5.25 61.88 -9.38 3.41 49
96 -47.25 -61.88 -28.12 3.41 49
97 -33.25 -9.38 -28.12 3.41 49
98 -40.25 50.62 9.38 3.41 49
99 -19.25 -61.88 -9.38 3.40 49
100 22.75 -24.38 -58.12 3.39 49
101 -29.75 35.62 -1.88 3.39 49
102 -54.25 -20.62 -39.38 3.39 49
103 40.25 -46.88 -20.62 3.39 49
104 8.75 -58.12 -28.12 3.38 49
105 -47.25 -46.88 -1.88 3.38 49
106 36.75 54.38 24.38 3.38 49
107 -29.75 31.88 -9.38 3.37 49
108 40.25 -35.62 -43.12 3.37 49
109 -50.75 -58.12 -13.12 3.36 49
110 36.75 61.88 28.12 3.35 49
111 -47.25 58.12 -1.88 3.35 49
112 -47.25 24.38 28.12 3.34 49
113 -47.25 -9.38 5.62 3.34 49
114 -33.25 -43.12 43.12 3.34 49
115 -50.75 -35.62 43.12 3.34 49
116 -47.25 -46.88 -58.12 3.34 49
117 68.25 -28.12 16.88 3.33 49
118 47.25 35.62 13.12 3.33 49
119 19.25 5.62 13.12 3.32 49
120 29.75 -46.88 -20.62 3.32 49
121 -8.75 -13.12 20.62 3.32 49
122 5.25 31.88 -35.62 3.32 49
123 15.75 -54.38 -20.62 3.32 49
124 43.75 9.38 50.62 3.32 49
125 15.75 5.62 9.38 3.31 49
126 8.75 -1.88 9.38 3.31 49
127 33.25 20.62 43.12 3.31 49
128 43.75 -54.38 9.38 3.30 49
129 -40.25 39.38 43.12 3.30 49
130 -47.25 -58.12 -31.88 3.30 49
131 12.25 -88.12 5.62 3.30 49
132 40.25 -69.38 -16.88 3.30 49
133 -43.75 -31.88 -9.38 3.29 49
134 50.75 1.88 43.12 3.29 49
135 43.75 16.88 31.88 3.29 49
136 -47.25 -50.62 31.88 3.29 49
137 15.75 13.12 43.12 3.29 49

shoe

Stat map plot for the contrast: shoe
Contrast Plot Plot of the contrast: shoe.

Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.291
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0

Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 19.25 73.12 20.62 4.65 49
2 22.75 -9.38 35.62 4.48 49
3 19.25 -20.62 -28.12 4.08 49
4 12.25 5.62 31.88 3.97 49
5 26.25 35.62 28.12 3.97 49
6 61.25 28.12 31.88 3.87 98
7 15.75 16.88 58.12 3.83 49
8 -5.25 -76.88 -28.12 3.74 49
9 36.75 46.88 -16.88 3.71 49
10 -19.25 -28.12 35.62 3.64 49
11 26.25 -46.88 -24.38 3.61 49
12 -12.25 39.38 65.62 3.61 49
13 -29.75 9.38 35.62 3.60 49
14 -8.75 84.38 20.62 3.60 49
15 -54.25 -65.62 16.88 3.59 49
16 -26.25 -13.12 -43.12 3.58 49
17 19.25 -28.12 -54.38 3.57 49
18 -12.25 1.88 -69.38 3.56 49
19 47.25 -28.12 -5.62 3.55 49
20 22.75 -69.38 -28.12 3.53 49
21 33.25 9.38 61.88 3.50 49
22 -8.75 20.62 73.12 3.49 49
23 22.75 61.88 31.88 3.49 49
24 40.25 -54.38 39.38 3.47 49
25 1.75 -24.38 -39.38 3.46 49
26 5.25 -13.12 24.38 3.46 49
27 -68.25 -20.62 24.38 3.45 49
28 -12.25 39.38 24.38 3.42 49
29 50.75 -35.62 -35.62 3.41 49
30 -1.75 -28.12 -73.12 3.39 49
31 29.75 24.38 -28.12 3.38 49
32 22.75 -54.38 -43.12 3.35 49

cat

Stat map plot for the contrast: cat
Contrast Plot Plot of the contrast: cat.

Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.291
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0

Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 12.25 -61.88 -31.88 5.00 295
2 -40.25 -65.62 13.12 4.41 147
3 5.25 -61.88 -24.38 4.34 98
4 -29.75 39.38 54.38 4.32 49
5 -12.25 -58.12 -16.88 4.29 49
6 -12.25 -76.88 31.88 4.27 98
7 43.75 -5.62 16.88 4.11 196
8 22.75 -24.38 -58.12 4.05 49
9 19.25 -31.88 -69.38 4.01 98
10 43.75 1.88 9.38 3.94 196
11 5.25 -80.62 9.38 3.90 98
12 61.25 -31.88 20.62 3.86 49
13 -12.25 -20.62 -58.12 3.86 98
14 1.75 35.62 -13.12 3.86 49
15 -29.75 35.62 50.62 3.83 49
16 -36.75 -50.62 -39.38 3.82 98
17 33.25 -1.88 46.88 3.80 49
18 50.75 1.88 -24.38 3.79 49
19 47.25 1.88 -46.88 3.79 49
20 50.75 28.12 24.38 3.78 49
21 -5.25 -50.62 -13.12 3.76 49
22 22.75 -61.88 -54.38 3.76 49
23 -12.25 -73.12 -31.88 3.73 49
24 36.75 28.12 43.12 3.72 98
25 36.75 69.38 5.62 3.71 49
26 -1.75 50.62 -9.38 3.70 49
27 5.25 -31.88 54.38 3.66 49
28 36.75 28.12 -20.62 3.62 49
29 -26.25 -80.62 9.38 3.61 98
30 8.75 -65.62 -24.38 3.60 49
31 -8.75 -46.88 -28.12 3.60 49
32 50.75 9.38 -35.62 3.60 49
33 43.75 5.62 1.88 3.59 49
34 -36.75 46.88 39.38 3.58 49
35 15.75 -80.62 -31.88 3.57 49
36 -54.25 -50.62 5.62 3.56 49
37 36.75 9.38 -35.62 3.55 49
38 29.75 -35.62 -50.62 3.53 49
39 -43.75 -65.62 5.62 3.53 49
40 15.75 -50.62 -39.38 3.50 49
41 61.25 -31.88 43.12 3.50 49
42 12.25 -54.38 -43.12 3.49 49
43 5.25 -61.88 -39.38 3.49 49
44 33.25 -54.38 43.12 3.49 49
45 -64.75 -9.38 -24.38 3.48 49
46 -54.25 -50.62 39.38 3.48 49
47 -40.25 -46.88 50.62 3.48 98
48 8.75 16.88 -16.88 3.48 98
49 -29.75 -46.88 5.62 3.47 49
50 12.25 -39.38 -31.88 3.44 49
51 -40.25 -5.62 50.62 3.44 49
52 64.75 20.62 9.38 3.43 49
53 5.25 -24.38 -73.12 3.42 49
54 12.25 -43.12 1.88 3.42 49
55 -19.25 16.88 69.38 3.42 49
56 -29.75 -54.38 -35.62 3.42 49
57 36.75 28.12 35.62 3.42 49
58 -64.75 -31.88 16.88 3.38 49
59 5.25 43.12 50.62 3.37 49
60 15.75 39.38 -20.62 3.37 49
61 29.75 9.38 -31.88 3.36 49
62 -36.75 -50.62 -20.62 3.35 49
63 -47.25 -43.12 43.12 3.35 49
64 -40.25 -46.88 16.88 3.35 49
65 -43.75 -1.88 -28.12 3.34 49
66 -40.25 -1.88 -31.88 3.34 49
67 12.25 5.62 5.62 3.34 49
68 -64.75 -16.88 24.38 3.33 49
69 -36.75 -76.88 5.62 3.33 98
70 43.75 31.88 39.38 3.33 49
71 -47.25 -50.62 46.88 3.33 49
72 -40.25 -69.38 35.62 3.31 49
73 -29.75 35.62 58.12 3.30 49
74 -22.75 76.88 5.62 3.29 49
75 47.25 13.12 43.12 3.29 49

scissors

Stat map plot for the contrast: scissors
Contrast Plot Plot of the contrast: scissors.

Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.291
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0

Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -50.75 20.62 -24.38 6.02 935
2 -12.25 20.62 -46.88 5.79 49
3 -15.75 16.88 -46.88 5.74 295
4 -19.25 84.38 20.62 5.60 295
5 -12.25 16.88 -50.62 5.51 49
6 -26.25 24.38 28.12 5.28 147
7 29.75 5.62 -5.62 5.26 147
8 36.75 20.62 -31.88 5.18 246
9 47.25 24.38 -1.88 5.12 147
10 12.25 13.12 -43.12 5.09 393
11 -22.75 -58.12 -50.62 5.08 393
11a -22.75 -46.88 -50.62 4.60
12 -19.25 61.88 50.62 5.05 49
13 -50.75 -9.38 -20.62 5.01 246
14 50.75 31.88 -31.88 4.97 49
15 -19.25 31.88 -35.62 4.91 196
16 1.75 -1.88 -61.88 4.86 295
17 33.25 5.62 -46.88 4.82 49
18 -12.25 1.88 -28.12 4.76 49
19 12.25 -61.88 -46.88 4.76 49
20 1.75 -28.12 -61.88 4.68 49
21 12.25 -35.62 -69.38 4.66 147
22 22.75 -58.12 -50.62 4.61 49
23 -54.25 -39.38 -31.88 4.60 49
24 1.75 13.12 -16.88 4.54 49
25 47.25 24.38 9.38 4.54 49
26 26.25 -46.88 1.88 4.54 49
27 40.25 5.62 31.88 4.53 98
28 -15.75 -43.12 -46.88 4.53 98
29 40.25 -58.12 -5.62 4.50 147
30 19.25 16.88 -46.88 4.50 49
31 5.25 24.38 -46.88 4.47 442
31a -1.75 28.12 -39.38 3.59
32 -5.25 -16.88 -39.38 4.45 98
33 50.75 24.38 -35.62 4.41 147
34 12.25 80.62 35.62 4.41 98
35 33.25 -35.62 -35.62 4.37 98
36 1.75 1.88 31.88 4.37 196
37 -12.25 76.88 20.62 4.36 98
38 47.25 -5.62 20.62 4.36 295
39 19.25 -46.88 -35.62 4.34 49
40 29.75 -1.88 24.38 4.33 49
41 -12.25 9.38 -58.12 4.29 98
42 54.25 5.62 50.62 4.29 49
43 15.75 -35.62 -73.12 4.28 49
44 19.25 80.62 1.88 4.28 98
45 54.25 1.88 43.12 4.27 98
46 15.75 76.88 28.12 4.26 49
47 -29.75 76.88 20.62 4.26 49
48 -54.25 9.38 -16.88 4.26 49
49 -1.75 -31.88 9.38 4.26 49
50 -22.75 -5.62 -20.62 4.25 49
51 -40.25 61.88 5.62 4.24 98
52 -47.25 24.38 20.62 4.22 49
53 26.25 13.12 -39.38 4.22 49
54 -1.75 -39.38 5.62 4.21 98
55 -8.75 28.12 54.38 4.17 196
56 40.25 -1.88 61.88 4.17 246
56a 40.25 -9.38 58.12 3.83
57 36.75 31.88 -39.38 4.17 246
58 -36.75 -1.88 -20.62 4.17 98
59 -5.25 -9.38 31.88 4.14 49
60 22.75 -54.38 -43.12 4.14 49
61 -29.75 20.62 -46.88 4.13 49
62 22.75 -1.88 9.38 4.11 49
63 -26.25 80.62 16.88 4.11 246
64 29.75 -46.88 -61.88 4.10 49
65 15.75 -28.12 -54.38 4.10 49
66 33.25 24.38 -43.12 4.08 98
67 -40.25 -16.88 -65.62 4.07 49
68 -47.25 31.88 -28.12 4.05 49
69 -26.25 76.88 24.38 4.05 147
70 19.25 -5.62 -35.62 4.04 49
71 54.25 1.88 35.62 4.03 196
72 12.25 24.38 -35.62 4.03 98
73 -26.25 -13.12 1.88 4.02 49
74 -5.25 80.62 31.88 4.02 147
75 -19.25 50.62 13.12 4.02 49
76 40.25 -43.12 -5.62 4.01 49
77 43.75 -31.88 -13.12 4.01 49
78 15.75 5.62 9.38 4.01 49
79 -33.25 -65.62 -16.88 4.00 49
80 26.25 -50.62 -54.38 4.00 98
81 33.25 -5.62 -1.88 3.99 49
82 40.25 -39.38 58.12 3.98 49
83 22.75 -43.12 -61.88 3.98 98
84 -19.25 20.62 24.38 3.98 49
85 57.75 -20.62 28.12 3.97 49
86 -5.25 84.38 1.88 3.96 49
87 40.25 -24.38 -35.62 3.96 49
88 -19.25 9.38 -35.62 3.95 49
89 12.25 80.62 -5.62 3.94 49
90 -5.25 -28.12 -76.88 3.94 147
91 50.75 50.62 20.62 3.93 49
92 19.25 -16.88 -54.38 3.93 49
93 33.25 -39.38 24.38 3.93 49
94 40.25 28.12 -43.12 3.92 98
95 -26.25 16.88 28.12 3.92 49
96 1.75 39.38 -16.88 3.92 49
97 -26.25 -24.38 20.62 3.91 49
98 -15.75 -9.38 28.12 3.91 49
99 -8.75 24.38 -35.62 3.90 98
100 50.75 -16.88 46.88 3.89 49
101 -15.75 76.88 31.88 3.89 49
102 1.75 -28.12 -76.88 3.89 49
103 47.25 16.88 -20.62 3.89 49
104 19.25 -28.12 73.12 3.87 49
105 57.75 -13.12 39.38 3.87 49
106 -8.75 84.38 20.62 3.87 98
107 29.75 76.88 13.12 3.87 49
108 40.25 13.12 -39.38 3.87 49
109 33.25 -69.38 -13.12 3.87 49
110 19.25 54.38 50.62 3.85 49
111 -12.25 -50.62 -50.62 3.85 49
112 -19.25 -1.88 -35.62 3.85 49
113 29.75 -50.62 -50.62 3.84 49
114 12.25 -61.88 9.38 3.84 49
115 -29.75 13.12 61.88 3.83 196
116 5.25 -1.88 5.62 3.83 98
117 15.75 -16.88 46.88 3.83 49
118 -1.75 -1.88 -76.88 3.82 98
119 -36.75 65.62 20.62 3.82 98
120 33.25 -39.38 -20.62 3.81 49
121 29.75 65.62 43.12 3.79 49
122 -50.75 -1.88 20.62 3.79 49
123 50.75 -39.38 -16.88 3.79 49
124 -12.25 -43.12 -13.12 3.78 49
125 -22.75 58.12 -20.62 3.77 246
126 5.25 39.38 -20.62 3.77 49
127 -26.25 31.88 -39.38 3.76 49
128 -1.75 -13.12 -54.38 3.76 98
129 -33.25 -58.12 -31.88 3.75 49
130 15.75 88.12 9.38 3.75 98
131 43.75 13.12 -28.12 3.75 98
132 26.25 -16.88 -16.88 3.75 49
133 -19.25 31.88 -28.12 3.74 49
134 5.25 9.38 -58.12 3.73 49
135 -8.75 9.38 65.62 3.73 49
136 -29.75 -69.38 9.38 3.73 98
137 -64.75 -5.62 5.62 3.71 98
138 12.25 -31.88 -46.88 3.71 49
139 15.75 50.62 -9.38 3.71 49
140 -40.25 -9.38 -5.62 3.70 49
141 33.25 -20.62 43.12 3.70 49
142 -12.25 -50.62 -13.12 3.69 49
143 26.25 -13.12 13.12 3.69 49
144 -5.25 80.62 13.12 3.68 49
145 -26.25 16.88 -16.88 3.67 49
146 19.25 -1.88 -1.88 3.66 49
147 19.25 16.88 -35.62 3.66 49
148 -1.75 73.12 35.62 3.66 49
149 29.75 -54.38 -61.88 3.65 49
150 1.75 -9.38 1.88 3.65 49
151 15.75 73.12 20.62 3.65 49
152 33.25 -50.62 -20.62 3.65 49
153 12.25 -35.62 -24.38 3.65 49
154 15.75 24.38 69.38 3.64 49
155 -47.25 -5.62 -28.12 3.64 49
156 -1.75 1.88 13.12 3.64 49
157 -40.25 69.38 13.12 3.63 49
158 12.25 -28.12 -31.88 3.62 49
159 8.75 1.88 24.38 3.62 49
160 29.75 -9.38 9.38 3.62 49
161 -15.75 -65.62 5.62 3.61 49
162 -26.25 -80.62 -5.62 3.61 49
163 33.25 5.62 16.88 3.60 49
164 33.25 -5.62 24.38 3.60 98
165 57.75 -1.88 5.62 3.60 49
166 15.75 -50.62 -35.62 3.60 49
167 33.25 -39.38 -43.12 3.60 49
168 33.25 24.38 61.88 3.60 49
169 -1.75 -35.62 -65.62 3.58 49
170 22.75 -20.62 20.62 3.58 49
171 -8.75 24.38 43.12 3.58 49
172 40.25 -13.12 46.88 3.58 49
173 -5.25 -20.62 54.38 3.58 98
174 -1.75 -13.12 31.88 3.57 49
175 -47.25 20.62 43.12 3.57 98
176 -33.25 69.38 20.62 3.56 98
177 57.75 -24.38 5.62 3.56 49
178 5.25 -65.62 20.62 3.56 49
179 26.25 -16.88 -35.62 3.55 49
180 -1.75 -46.88 -1.88 3.55 98
181 -50.75 13.12 20.62 3.55 49
182 40.25 69.38 16.88 3.55 49
183 1.75 16.88 -20.62 3.55 49
184 -29.75 20.62 20.62 3.54 49
185 -29.75 31.88 -9.38 3.54 49
186 40.25 -16.88 9.38 3.54 49
187 -12.25 88.12 9.38 3.54 49
188 -5.25 5.62 39.38 3.54 49
189 -1.75 -13.12 -5.62 3.54 49
190 -8.75 80.62 5.62 3.54 98
191 -50.75 -13.12 5.62 3.54 49
192 57.75 16.88 16.88 3.53 49
193 1.75 13.12 31.88 3.53 98
194 -33.25 39.38 54.38 3.53 49
195 -5.25 28.12 61.88 3.52 49
196 -43.75 -24.38 35.62 3.52 49
197 -43.75 31.88 -24.38 3.52 49
198 1.75 65.62 46.88 3.52 49
199 -5.25 5.62 -69.38 3.52 49
200 -22.75 -39.38 -54.38 3.51 49
201 33.25 -28.12 -39.38 3.51 49
202 -1.75 -5.62 -80.62 3.51 98
203 26.25 28.12 -43.12 3.51 49
204 33.25 31.88 -20.62 3.50 49
205 -33.25 73.12 9.38 3.50 49
206 -1.75 20.62 54.38 3.50 49
207 12.25 -1.88 43.12 3.50 49
208 57.75 -28.12 9.38 3.50 49
209 -12.25 1.88 9.38 3.49 49
210 -40.25 43.12 -31.88 3.49 49
211 43.75 -9.38 -16.88 3.49 49
212 47.25 -9.38 54.38 3.49 49
213 -57.75 -5.62 -1.88 3.48 49
214 50.75 1.88 46.88 3.48 49
215 15.75 88.12 16.88 3.47 49
216 54.25 9.38 28.12 3.47 98
217 -5.25 39.38 58.12 3.46 49
218 50.75 16.88 -5.62 3.46 49
219 15.75 46.88 -20.62 3.46 49
220 50.75 54.38 -5.62 3.46 49
221 33.25 -13.12 50.62 3.45 49
222 57.75 -24.38 -13.12 3.45 49
223 -22.75 -9.38 39.38 3.45 49
224 -19.25 -5.62 16.88 3.45 49
225 19.25 -5.62 61.88 3.45 49
226 -43.75 16.88 39.38 3.45 49
227 -1.75 -73.12 -31.88 3.44 49
228 -15.75 1.88 28.12 3.43 49
229 -54.25 20.62 -16.88 3.43 49
230 40.25 16.88 61.88 3.43 49
231 8.75 -1.88 28.12 3.43 49
232 47.25 -9.38 28.12 3.42 49
233 29.75 9.38 16.88 3.42 49
234 12.25 9.38 -54.38 3.42 98
235 33.25 -13.12 -61.88 3.42 49
236 -5.25 1.88 -76.88 3.42 49
237 33.25 -31.88 -43.12 3.42 49
238 -8.75 20.62 58.12 3.42 49
239 -36.75 69.38 16.88 3.42 49
240 -22.75 -88.12 -1.88 3.42 49
241 33.25 -1.88 -24.38 3.41 49
242 26.25 -61.88 -16.88 3.41 49
243 -12.25 46.88 -16.88 3.41 49
244 -47.25 -16.88 -39.38 3.40 49
245 33.25 24.38 31.88 3.40 49
246 43.75 -61.88 5.62 3.40 49
247 -40.25 -16.88 -20.62 3.40 49
248 50.75 -16.88 58.12 3.40 49
249 22.75 -20.62 -5.62 3.40 49
250 1.75 76.88 16.88 3.40 49
251 33.25 -20.62 -58.12 3.40 49
252 22.75 -35.62 -9.38 3.39 49
253 36.75 1.88 65.62 3.39 49
254 -22.75 -31.88 -43.12 3.39 49
255 -15.75 -46.88 -43.12 3.39 49
256 36.75 39.38 16.88 3.38 49
257 47.25 -16.88 31.88 3.38 49
258 36.75 -65.62 -13.12 3.38 49
259 12.25 -24.38 -50.62 3.38 49
260 8.75 76.88 16.88 3.37 49
261 29.75 -58.12 -46.88 3.37 49
262 -47.25 20.62 -16.88 3.37 49
263 22.75 -43.12 54.38 3.37 49
264 -5.25 -1.88 -28.12 3.37 98
265 -8.75 -5.62 -58.12 3.36 49
266 57.75 -9.38 43.12 3.35 49
267 -22.75 39.38 31.88 3.35 49
268 -8.75 5.62 73.12 3.35 49
269 1.75 -39.38 -20.62 3.34 49
270 54.25 -16.88 -13.12 3.34 98
271 -36.75 24.38 -39.38 3.34 49
272 -43.75 24.38 -1.88 3.34 49
273 47.25 -5.62 50.62 3.34 49
274 57.75 -31.88 46.88 3.33 49
275 50.75 -54.38 9.38 3.33 49
276 -33.25 28.12 -39.38 3.33 49
277 5.25 35.62 -9.38 3.32 49
278 5.25 -50.62 -5.62 3.31 49
279 -57.75 -9.38 -13.12 3.31 49
280 40.25 -43.12 54.38 3.31 49
281 -40.25 -31.88 39.38 3.30 49
282 22.75 -13.12 -20.62 3.30 49
283 33.25 39.38 -16.88 3.30 49
284 1.75 -9.38 -58.12 3.30 49
285 8.75 46.88 -20.62 3.30 49
286 -50.75 20.62 20.62 3.30 49
287 -43.75 16.88 58.12 3.30 49
288 -19.25 -13.12 -46.88 3.30 49
289 43.75 -50.62 -5.62 3.29 49
290 12.25 1.88 -69.38 3.29 49
291 1.75 -35.62 -13.12 3.29 49
292 -33.25 9.38 35.62 3.29 49

Built using Nilearn. Source code on GitHub. File bugs & feature requests here.


In a jupyter notebook, the report will be automatically inserted, as above.

# We can access the report via a browser:
# report.open_in_browser()

# or we can save as an html file
# from pathlib import Path
# output_dir = Path.cwd() / "results" / "plot_haxby_glm_decoding"
# output_dir.mkdir(exist_ok=True, parents=True)
# report.save_as_html(output_dir / 'report.html')

Build the decoding pipeline

To define the decoding pipeline we use Decoder object, we choose :

  • a prediction model, here a Support Vector Classifier, with a linear kernel

  • the mask to use, here a ventral temporal ROI in the visual cortex

  • although it usually helps to decode better, z-maps time series don’t need to be rescaled to a 0 mean, variance of 1 so we use standardize=False.

  • we use univariate feature selection to reduce the dimension of the problem keeping only 5% of voxels which are most informative.

  • a cross-validation scheme, here we use LeaveOneGroupOut cross-validation on the runs which corresponds to a leave-one-run-out

We fit directly this pipeline on the Niimgs outputs of the GLM, with corresponding conditions labels and run labels (for the cross validation).

from sklearn.model_selection import LeaveOneGroupOut

from nilearn.decoding import Decoder

decoder = Decoder(
    estimator="svc",
    mask=haxby_dataset.mask,
    standardize=False,
    screening_percentile=5,
    cv=LeaveOneGroupOut(),
)
decoder.fit(z_maps, conditions_label, groups=run_label)

# Return the corresponding mean prediction accuracy compared to chance
# for classifying one-vs-all items.

classification_accuracy = np.mean(list(decoder.cv_scores_.values()))
chance_level = 1.0 / len(np.unique(conditions))
print(
    f"Classification accuracy: {classification_accuracy:.4f} / "
    f"Chance level: {chance_level}"
)
/home/runner/work/nilearn/nilearn/.tox/doc/lib/python3.9/site-packages/nilearn/image/resampling.py:489: UserWarning:

The provided image has no sform in its header. Please check the provided file. Results may not be as expected.

Classification accuracy: 0.7589 / Chance level: 0.125

Total running time of the script: (2 minutes 11.967 seconds)

Estimated memory usage: 1095 MB

Gallery generated by Sphinx-Gallery