Decoding of a dataset after GLM fit for signal extraction

Full step-by-step example of fitting a GLM to perform a decoding experiment. In this decoding analysis, we will be doing a one-vs-all classification. We use the data from one subject of the Haxby dataset.

More specifically:

  1. Download the Haxby dataset.

  2. Extract the information to generate a glm representing the blocks of stimuli.

  3. Analyze the decoding performance using a classifier.

Fetch example Haxby dataset

We download the Haxby dataset This is a study of visual object category representation

# By default 2nd subject will be fetched
import numpy as np
import pandas as pd

from nilearn.datasets import fetch_haxby

haxby_dataset = fetch_haxby()
[fetch_haxby] Dataset found in /home/runner/nilearn_data/haxby2001

Load the behavioral data

# Load target information as string and give a numerical identifier to each
behavioral = pd.read_csv(haxby_dataset.session_target[0], sep=" ")
conditions = behavioral["labels"].to_numpy()

# Record these as an array of runs
runs = behavioral["chunks"].to_numpy()
unique_runs = behavioral["chunks"].unique()

# fMRI data: a unique file for each run
func_filename = haxby_dataset.func[0]

Build a proper event structure for each run

events = {}
# events will take the form of a dictionary of Dataframes, one per run
for run in unique_runs:
    # get the condition label per run
    conditions_run = conditions[runs == run]
    # get the number of scans per run, then the corresponding
    # vector of frame times
    n_scans = len(conditions_run)
    frame_times = haxby_dataset.t_r * np.arange(n_scans)
    # each event last the full TR
    duration = haxby_dataset.t_r * np.ones(n_scans)
    # Define the events object
    events_ = pd.DataFrame(
        {
            "onset": frame_times,
            "trial_type": conditions_run,
            "duration": duration,
        }
    )
    # remove the rest condition and insert into the dictionary
    events[run] = events_[events_.trial_type != "rest"]

Instantiate and run FirstLevelModel

We generate a list of z-maps together with their run and condition index

z_maps = []
conditions_label = []
run_label = []

# Instantiate the glm
from nilearn.glm.first_level import FirstLevelModel

glm = FirstLevelModel(
    t_r=haxby_dataset.t_r,
    mask_img=haxby_dataset.mask,
    high_pass=0.008,
    smoothing_fwhm=4,
    memory="nilearn_cache",
    memory_level=1,
    verbose=1,
)

Run the GLM on data from each run

events[run].trial_type.unique()
from nilearn.image import index_img

for run in unique_runs:
    # grab the fmri data for that particular run
    fmri_run = index_img(func_filename, runs == run)

    # fit the GLM
    glm.fit(fmri_run, events=events[run])

    # set up contrasts: one per condition
    conditions = events[run].trial_type.unique()
    for condition_ in conditions:
        z_maps.append(glm.compute_contrast(condition_))
        conditions_label.append(condition_)
        run_label.append(run)
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac36dda650>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resampling mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac36dda650>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 0 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-0.114769, ..., -2.149296],
       ...,
       [ 2.367151, ...,  0.779998]], shape=(121, 39912), dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]], shape=(121, 13)), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.1s, 0.0min
[FirstLevelModel.fit] GLM took 1 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 2 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac36d1f6d0>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resampling mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac36d1f6d0>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 0 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 12.660587, ..., -13.536042],
       ...,
       [ -3.254408, ..., -33.842804]], shape=(121, 39912), dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]], shape=(121, 13)), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 0.9s, 0.0min
[FirstLevelModel.fit] GLM took 0 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 1 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac5aab1930>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resampling mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac5aab1930>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 0 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 5.205584, ..., 26.587189],
       ...,
       [-6.836576, ..., 10.676956]], shape=(121, 39912), dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]], shape=(121, 13)), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 0.9s, 0.0min
[FirstLevelModel.fit] GLM took 0 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 1 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac57779f60>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resampling mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac57779f60>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 0 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-2.026206, ...,  5.974948],
       ...,
       [ 2.616334, ...,  0.104535]], shape=(121, 39912), dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]], shape=(121, 13)), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 0.9s, 0.0min
[FirstLevelModel.fit] GLM took 0 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 1 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac36dda410>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resampling mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac36dda410>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 0 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 53.033577, ..., -55.45955 ],
       ...,
       [-51.57195 , ..., -55.994713]], shape=(121, 39912), dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]], shape=(121, 13)), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 0.9s, 0.0min
[FirstLevelModel.fit] GLM took 0 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 1 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac36677250>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resampling mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac36677250>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 0 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-27.150482, ...,  -5.81308 ],
       ...,
       [-30.204891, ...,   7.417917]], shape=(121, 39912), dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]], shape=(121, 13)), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 0.9s, 0.0min
[FirstLevelModel.fit] GLM took 0 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 1 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac369d3b80>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resampling mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac369d3b80>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 0 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[129.51173 , ..., -15.279282],
       ...,
       [-18.911755, ...,  21.839058]], shape=(121, 39912), dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]], shape=(121, 13)), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 0.9s, 0.0min
[FirstLevelModel.fit] GLM took 0 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 1 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac36676cb0>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resampling mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac36676cb0>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 0 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-15.915996, ...,  22.07737 ],
       ...,
       [-16.981215, ...,   3.372383]], shape=(121, 39912), dtype=float32),
array([[ 0.      , ...,  1.      ],
       ...,
       [-0.352245, ...,  1.      ]], shape=(121, 13)), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 0.9s, 0.0min
[FirstLevelModel.fit] GLM took 0 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 1 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac5aab0430>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resampling mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac5aab0430>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 0 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-0.292987, ..., 18.392956],
       ...,
       [-3.935719, ...,  0.602484]], shape=(121, 39912), dtype=float32),
array([[ 0.      , ...,  1.      ],
       ...,
       [-0.352245, ...,  1.      ]], shape=(121, 13)), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 0.9s, 0.0min
[FirstLevelModel.fit] GLM took 0 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 1 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac368a7a90>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resampling mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac368a7a90>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 0 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-5.223948, ..., -5.959582],
       ...,
       [-7.677519, ..., 16.024363]], shape=(121, 39912), dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]], shape=(121, 13)), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 0.9s, 0.0min
[FirstLevelModel.fit] GLM took 0 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 1 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac5aab3b50>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resampling mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac5aab3b50>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 0 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-19.66533 , ...,  -6.299562],
       ...,
       [-24.647343, ...,   2.331865]], shape=(121, 39912), dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]], shape=(121, 13)), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 0.9s, 0.0min
[FirstLevelModel.fit] GLM took 0 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 1 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac5aa647c0>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resampling mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac5aa647c0>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 0 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-1.095605, ..., 16.449202],
       ...,
       [ 2.59974 , ..., -2.179998]], shape=(121, 39912), dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]], shape=(121, 13)), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 0.8s, 0.0min
[FirstLevelModel.fit] GLM took 0 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 1 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals

Generating a report

Since we have already computed the FirstLevelModel and have the contrast, we can quickly create a summary report.

from nilearn.image import mean_img

mean_img_ = mean_img(func_filename)
report = glm.generate_report(
    contrasts=conditions,
    bg_img=mean_img_,
)
[FirstLevelModel.generate_report] Computing image from signals
[FirstLevelModel.generate_report] Computing image from signals
[FirstLevelModel.generate_report] Computing image from signals
[FirstLevelModel.generate_report] Computing image from signals
[FirstLevelModel.generate_report] Computing image from signals
[FirstLevelModel.generate_report] Computing image from signals
[FirstLevelModel.generate_report] Computing image from signals
[FirstLevelModel.generate_report] Computing image from signals
[FirstLevelModel.generate_report] Generating contrast-level figures...
[FirstLevelModel.generate_report] Generating design matrices figures...
[FirstLevelModel.generate_report] Generating contrast matrices figures...

Note

The generated report can be:

  • displayed in a Notebook,

  • opened in a browser using the .open_in_browser() method,

  • or saved to a file using the .save_as_html(output_filepath) method.

Statistical Report - First Level Model Implement the General Linear Model for single run :term:`fMRI` data.

Description

Data were analyzed using Nilearn (version= 0.13.1.dev25+g67cc0a224; RRID:SCR_001362).

At the subject level, a mass univariate analysis was performed with a linear regression at each voxel of the brain, using generalized least squares with a global ar1 noise model to account for temporal auto-correlation and a cosine drift model (high pass filter=0.008 Hz).

Regressors were entered into run-specific design matrices and onsets were convolved with a glover canonical hemodynamic response function for the following conditions:

  • shoe
  • cat
  • scissors
  • scrambledpix
  • face
  • bottle
  • chair
  • house

Input images were smoothed with gaussian kernel (full-width at half maximum=4 mm).

The following contrasts were computed using a fixed-effect approach across runs :

  • bottle
  • house
  • chair
  • scrambledpix
  • face
  • shoe
  • cat
  • scissors

Model details

First Level Model
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Mask

Mask image

The mask includes 39912 voxels (24.4 %) of the image.

Statistical Maps

bottle

Stat map plot for the contrast: bottle
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -54.25 13.12 5.62 6.49 98
2 29.75 -20.62 -24.38 6.49 984
2a 12.25 -20.62 -31.88 4.58
2b 29.75 -28.12 -24.38 4.06
3 26.25 -20.62 -13.12 6.13 344
4 -36.75 -46.88 -46.88 6.11 196
5 43.75 -50.62 -5.62 6.03 1821
5a 47.25 -43.12 -1.88 4.74
5b 40.25 -28.12 -1.88 3.99
6 -1.75 -39.38 13.12 5.95 147
7 33.25 -43.12 -43.12 5.94 2313
7a 26.25 -35.62 -43.12 5.67
7b 8.75 -50.62 -35.62 5.13
8 22.75 -54.38 -39.38 5.91 1033
8a 12.25 -54.38 -43.12 4.67
9 -43.75 28.12 -9.38 5.90 196
10 -12.25 -24.38 -76.88 5.86 196
11 -19.25 -24.38 -43.12 5.80 787
11a -19.25 -31.88 -39.38 5.31
11b -26.25 -39.38 -43.12 3.64
12 26.25 -46.88 -46.88 5.75 147
13 -57.75 -39.38 9.38 5.74 295
14 33.25 5.62 -13.12 5.69 689
14a 26.25 9.38 -16.88 5.46
15 22.75 -46.88 -61.88 5.68 541
16 19.25 -76.88 -13.12 5.60 639
17 22.75 -43.12 9.38 5.57 246
18 -29.75 9.38 -28.12 5.56 246
19 26.25 -69.38 -16.88 5.49 836
19a 36.75 -65.62 -13.12 4.91
19b 33.25 -58.12 -16.88 4.13
20 47.25 -24.38 -13.12 5.47 3445
20a 40.25 -35.62 -24.38 5.23
20b 33.25 -50.62 -20.62 4.80
20c 43.75 -16.88 -13.12 4.67
21 1.75 50.62 -16.88 5.46 295
22 -26.25 -16.88 -24.38 5.38 196
23 12.25 -84.38 -28.12 5.31 98
24 -29.75 -43.12 -50.62 5.30 787
24a -15.75 -39.38 -50.62 4.64
24b -15.75 -43.12 -43.12 4.00
25 1.75 -43.12 -1.88 5.29 147
26 -15.75 -28.12 -43.12 5.24 49
27 12.25 -13.12 -28.12 5.23 147
28 -47.25 -13.12 13.12 5.21 442
29 -19.25 -50.62 -39.38 5.19 639
29a -8.75 -35.62 -39.38 4.36
29b -12.25 -46.88 -39.38 3.96
30 -40.25 -35.62 -35.62 5.17 344
31 12.25 -28.12 -73.12 5.16 147
32 19.25 -31.88 16.88 5.10 49
33 -1.75 -50.62 -39.38 5.08 98
34 -50.75 35.62 -16.88 5.08 196
35 -26.25 -54.38 46.88 5.06 98
36 -54.25 -31.88 -13.12 5.06 49
37 -8.75 -46.88 -65.62 5.05 344
38 1.75 -58.12 -24.38 5.05 246
39 -33.25 13.12 28.12 5.05 836
39a -36.75 20.62 35.62 4.60
40 -12.25 5.62 -16.88 5.03 98
41 12.25 -58.12 -28.12 5.03 344
42 19.25 -43.12 -20.62 5.02 98
43 -26.25 -20.62 -13.12 5.02 147
44 -47.25 -39.38 -20.62 5.00 1476
44a -47.25 -24.38 -16.88 4.41
44b -50.75 -39.38 -9.38 4.39
45 -40.25 -61.88 -16.88 4.99 344
46 5.25 -61.88 -20.62 4.97 689
46a 19.25 -65.62 -24.38 4.25
46b 12.25 -61.88 -20.62 3.99
46c 26.25 -61.88 -16.88 3.58
47 -61.25 -5.62 20.62 4.96 98
48 40.25 16.88 -20.62 4.96 49
49 -26.25 -54.38 -46.88 4.95 147
50 22.75 31.88 9.38 4.93 49
51 8.75 -16.88 46.88 4.93 49
52 -43.75 50.62 16.88 4.90 98
53 22.75 -20.62 -35.62 4.90 98
54 -29.75 -84.38 1.88 4.89 590
54a -36.75 -76.88 1.88 4.46
54b -36.75 -69.38 5.62 4.13
55 -40.25 -20.62 -31.88 4.83 49
56 -36.75 58.12 35.62 4.83 98
57 19.25 35.62 28.12 4.82 49
58 -1.75 -46.88 -24.38 4.81 295
59 33.25 -9.38 -58.12 4.80 98
60 -29.75 -58.12 -9.38 4.80 49
61 -36.75 -39.38 31.88 4.80 344
62 -15.75 -31.88 -61.88 4.80 49
63 -40.25 24.38 -9.38 4.78 49
64 33.25 31.88 -9.38 4.77 98
65 -1.75 -46.88 1.88 4.76 147
66 1.75 -1.88 31.88 4.76 98
67 -40.25 -28.12 -20.62 4.75 49
68 -33.25 -13.12 -13.12 4.75 344
69 -15.75 -1.88 -69.38 4.75 49
70 -47.25 24.38 20.62 4.75 442
70a -54.25 13.12 20.62 4.03
71 26.25 31.88 -31.88 4.75 147
72 -12.25 -58.12 -16.88 4.74 49
73 -12.25 -5.62 28.12 4.74 689
73a -12.25 9.38 24.38 4.48
74 36.75 -61.88 -5.62 4.74 147
75 -33.25 -73.12 31.88 4.72 49
76 12.25 43.12 -16.88 4.72 49
77 -1.75 -9.38 -20.62 4.71 49
78 -47.25 -54.38 -9.38 4.69 393
79 8.75 -91.88 5.62 4.68 49
80 -50.75 9.38 9.38 4.67 49
81 8.75 -20.62 -13.12 4.67 147
82 -22.75 16.88 5.62 4.66 344
82a -29.75 24.38 5.62 3.41
83 29.75 -50.62 -50.62 4.66 246
84 -5.25 -13.12 -69.38 4.66 147
85 19.25 -35.62 69.38 4.65 49
86 22.75 -35.62 54.38 4.64 295
86a 26.25 -43.12 54.38 4.06
87 -47.25 -9.38 5.62 4.63 295
88 -1.75 -54.38 -9.38 4.62 98
89 19.25 -39.38 -13.12 4.61 49
90 33.25 9.38 -24.38 4.61 98
91 22.75 46.88 -16.88 4.61 98
92 22.75 -16.88 -9.38 4.61 98
93 -43.75 24.38 -1.88 4.59 196
94 15.75 50.62 58.12 4.59 98
95 19.25 16.88 28.12 4.59 49
96 -40.25 -65.62 -5.62 4.59 98
97 -29.75 -80.62 -9.38 4.58 98
98 -15.75 -76.88 28.12 4.57 344
99 -57.75 -16.88 1.88 4.57 98
100 22.75 9.38 16.88 4.57 295
101 -1.75 13.12 -20.62 4.57 98
102 40.25 -35.62 -43.12 4.56 49
103 -5.25 -31.88 58.12 4.55 49
104 12.25 24.38 61.88 4.55 98
105 26.25 28.12 -20.62 4.55 196
106 -57.75 5.62 13.12 4.55 492
106a -61.25 -1.88 9.38 4.19
106b -57.75 -9.38 9.38 4.13
107 19.25 -1.88 28.12 4.54 147
108 5.25 -76.88 24.38 4.54 49
109 33.25 20.62 -20.62 4.54 98
110 -15.75 16.88 43.12 4.53 196
111 -47.25 -28.12 5.62 4.51 49
112 -29.75 13.12 -13.12 4.51 295
112a -26.25 5.62 -13.12 4.20
113 12.25 -80.62 13.12 4.51 147
114 -8.75 84.38 20.62 4.50 196
115 15.75 -35.62 73.12 4.50 246
116 -15.75 -16.88 24.38 4.49 147
117 -15.75 9.38 -20.62 4.49 98
118 22.75 -28.12 69.38 4.49 147
119 12.25 -9.38 13.12 4.49 393
119a 26.25 -9.38 13.12 4.01
120 5.25 -43.12 -9.38 4.49 49
121 -1.75 -9.38 -46.88 4.49 344
122 -26.25 13.12 46.88 4.48 49
123 -12.25 -13.12 -46.88 4.48 147
124 -1.75 -50.62 -1.88 4.47 49
125 1.75 24.38 31.88 4.47 49
126 -5.25 -24.38 -20.62 4.45 196
127 8.75 16.88 -20.62 4.45 49
128 15.75 -24.38 -35.62 4.45 344
129 -22.75 31.88 -24.38 4.45 98
130 -47.25 -28.12 43.12 4.44 49
131 -33.25 13.12 13.12 4.44 295
132 -47.25 -61.88 -5.62 4.44 98
133 -50.75 39.38 9.38 4.44 49
134 -50.75 -20.62 9.38 4.43 98
135 33.25 -24.38 -13.12 4.43 147
136 -15.75 -20.62 -58.12 4.43 98
137 -54.25 -46.88 -5.62 4.42 98
138 40.25 31.88 13.12 4.42 49
139 -43.75 16.88 58.12 4.42 49
140 -12.25 -58.12 -46.88 4.40 49
141 -22.75 -9.38 13.12 4.40 49
142 22.75 16.88 5.62 4.39 196
143 50.75 1.88 43.12 4.39 147
144 -1.75 -39.38 1.88 4.39 295
145 -50.75 -16.88 24.38 4.38 49
146 36.75 50.62 1.88 4.38 147
147 22.75 13.12 35.62 4.36 344
147a 12.25 20.62 35.62 4.14
148 -36.75 16.88 50.62 4.36 196
149 36.75 43.12 -28.12 4.35 49
150 33.25 24.38 39.38 4.35 49
151 36.75 5.62 35.62 4.34 196
152 29.75 -31.88 39.38 4.34 541
152a 40.25 -35.62 39.38 3.94
153 -15.75 -50.62 -1.88 4.33 98
154 -5.25 -46.88 -16.88 4.33 738
155 -1.75 -65.62 16.88 4.33 344
155a 5.25 -73.12 16.88 4.13
156 -47.25 35.62 16.88 4.33 344
157 -36.75 43.12 24.38 4.32 98
158 -54.25 -20.62 -9.38 4.32 49
159 -15.75 20.62 -46.88 4.32 98
160 47.25 -54.38 -16.88 4.31 49
161 -50.75 -50.62 20.62 4.31 49
162 -22.75 1.88 -1.88 4.31 49
163 -26.25 1.88 43.12 4.31 98
164 -15.75 -54.38 43.12 4.31 49
165 8.75 13.12 50.62 4.30 98
166 -15.75 -73.12 -13.12 4.30 147
167 54.25 -24.38 -5.62 4.29 246
168 -15.75 -1.88 16.88 4.29 49
169 -43.75 43.12 -28.12 4.28 147
170 68.25 -1.88 -9.38 4.28 196
170a 68.25 -13.12 -9.38 4.25
171 -50.75 16.88 -1.88 4.28 49
172 19.25 -69.38 -13.12 4.28 147
173 12.25 50.62 -1.88 4.28 98
174 19.25 -9.38 20.62 4.28 49
175 -19.25 1.88 58.12 4.27 98
176 -29.75 -80.62 -24.38 4.27 49
177 19.25 -1.88 43.12 4.26 98
178 -19.25 -58.12 -9.38 4.26 49
179 -5.25 31.88 -20.62 4.25 147
180 -15.75 -46.88 -5.62 4.25 98
181 54.25 -9.38 20.62 4.25 246
182 -47.25 -58.12 13.12 4.25 98
183 50.75 -54.38 -9.38 4.23 49
184 -50.75 -5.62 -5.62 4.23 196
185 -22.75 -69.38 -13.12 4.23 196
186 19.25 16.88 13.12 4.23 147
187 15.75 9.38 43.12 4.22 246
188 1.75 13.12 9.38 4.22 49
189 12.25 -54.38 -54.38 4.22 49
190 15.75 -88.12 5.62 4.21 98
191 -40.25 5.62 -28.12 4.21 246
192 40.25 -31.88 54.38 4.21 98
193 -1.75 -1.88 1.88 4.20 246
194 -1.75 1.88 13.12 4.20 49
195 12.25 -9.38 5.62 4.20 49
196 12.25 24.38 -39.38 4.19 393
196a 12.25 20.62 -46.88 3.64
197 50.75 43.12 -5.62 4.19 49
198 -1.75 -58.12 -54.38 4.19 49
199 -47.25 -28.12 13.12 4.18 98
200 -26.25 50.62 5.62 4.18 196
201 15.75 -1.88 -16.88 4.17 196
202 54.25 1.88 35.62 4.17 98
203 -47.25 -43.12 9.38 4.17 147
204 40.25 5.62 -24.38 4.17 49
205 40.25 35.62 -1.88 4.17 49
206 22.75 46.88 13.12 4.16 49
207 50.75 -5.62 5.62 4.16 49
208 -40.25 -58.12 9.38 4.16 98
209 -26.25 -31.88 16.88 4.16 49
210 -22.75 -54.38 -61.88 4.16 147
211 -12.25 20.62 73.12 4.15 246
212 -36.75 43.12 1.88 4.15 196
213 19.25 -24.38 16.88 4.15 49
214 8.75 46.88 -5.62 4.14 49
215 19.25 -9.38 5.62 4.14 98
216 -26.25 -28.12 -31.88 4.13 49
217 54.25 -20.62 39.38 4.13 196
218 36.75 -35.62 -9.38 4.13 393
219 -19.25 61.88 5.62 4.13 49
220 26.25 -61.88 31.88 4.13 49
221 5.25 -28.12 -9.38 4.13 147
222 -54.25 1.88 13.12 4.13 49
223 -50.75 13.12 -5.62 4.12 49
224 -8.75 -46.88 -31.88 4.12 49
225 -15.75 13.12 50.62 4.12 147
226 -40.25 -46.88 1.88 4.10 147
227 -33.25 -35.62 -65.62 4.10 98
228 12.25 80.62 35.62 4.10 246
229 29.75 -31.88 -31.88 4.10 49
230 -33.25 1.88 -16.88 4.10 147
231 -29.75 -1.88 -24.38 4.09 98
232 -54.25 46.88 9.38 4.09 98
233 -43.75 -65.62 24.38 4.08 49
234 1.75 -5.62 -13.12 4.08 49
235 1.75 -5.62 -54.38 4.07 49
236 19.25 13.12 -1.88 4.07 98
237 -61.25 -20.62 13.12 4.07 49
238 22.75 -35.62 -20.62 4.06 147
239 29.75 -43.12 -58.12 4.06 49
240 26.25 24.38 13.12 4.06 147
241 -8.75 5.62 -24.38 4.06 49
242 -15.75 24.38 -9.38 4.05 98
243 -15.75 -1.88 -31.88 4.05 49
244 8.75 20.62 -24.38 4.05 49
245 -22.75 -1.88 -20.62 4.05 442
246 26.25 1.88 13.12 4.04 147
247 -33.25 28.12 31.88 4.04 246
248 29.75 -58.12 -46.88 4.04 49
249 5.25 -61.88 54.38 4.03 196
250 40.25 9.38 -20.62 4.02 98
251 -54.25 5.62 -16.88 4.01 246
252 -33.25 -35.62 -9.38 4.01 98
253 -26.25 -73.12 -35.62 4.01 98
254 47.25 43.12 9.38 4.00 49
255 1.75 -76.88 35.62 4.00 49
256 -33.25 -69.38 39.38 4.00 49
257 -47.25 -65.62 1.88 4.00 196
258 -12.25 46.88 28.12 4.00 49
259 -1.75 -24.38 9.38 3.99 49
260 -1.75 58.12 13.12 3.99 49
261 -19.25 13.12 28.12 3.99 49
262 29.75 65.62 43.12 3.98 49
263 40.25 -20.62 20.62 3.98 147
264 36.75 28.12 -35.62 3.97 49
265 -57.75 -31.88 -5.62 3.97 49
266 -19.25 24.38 31.88 3.97 49
267 -50.75 28.12 46.88 3.97 98
268 61.25 -31.88 39.38 3.97 49
269 -47.25 20.62 -13.12 3.96 246
270 47.25 16.88 -39.38 3.96 98
271 64.75 -43.12 5.62 3.95 49
272 -15.75 -31.88 -16.88 3.95 49
273 5.25 -88.12 -1.88 3.95 49
274 22.75 -69.38 1.88 3.95 147
275 12.25 9.38 28.12 3.94 147
276 36.75 -73.12 5.62 3.94 98
277 33.25 43.12 35.62 3.94 49
278 33.25 43.12 24.38 3.93 49
279 26.25 -20.62 -65.62 3.93 246
280 -22.75 -76.88 -16.88 3.93 49
281 54.25 -28.12 -9.38 3.93 98
282 12.25 -9.38 50.62 3.92 49
283 -12.25 -28.12 -50.62 3.92 196
284 15.75 -35.62 31.88 3.92 98
285 15.75 -1.88 -1.88 3.92 49
286 5.25 -28.12 73.12 3.92 49
287 -26.25 -61.88 35.62 3.92 147
288 5.25 -58.12 -54.38 3.92 49
289 -19.25 -76.88 -28.12 3.91 98
290 19.25 -76.88 -35.62 3.91 98
291 22.75 5.62 -1.88 3.91 49
292 -54.25 -20.62 -24.38 3.91 98
293 -1.75 -9.38 -5.62 3.91 49
294 15.75 -20.62 73.12 3.91 147
295 19.25 65.62 9.38 3.91 49
296 -64.75 -13.12 -24.38 3.91 49
297 -15.75 -5.62 61.88 3.91 147
298 -26.25 24.38 13.12 3.90 98
299 -19.25 -13.12 61.88 3.90 49
300 -22.75 13.12 -24.38 3.90 49
301 19.25 54.38 1.88 3.90 147
302 -15.75 54.38 54.38 3.90 98
303 1.75 -31.88 1.88 3.89 147
304 -33.25 39.38 54.38 3.89 49
305 33.25 50.62 50.62 3.89 49
306 5.25 -35.62 -58.12 3.89 98
307 -47.25 -28.12 28.12 3.89 49
308 12.25 69.38 5.62 3.89 49
309 5.25 -50.62 -20.62 3.88 98
310 15.75 88.12 9.38 3.88 98
311 -19.25 -50.62 16.88 3.88 49
312 -47.25 16.88 5.62 3.88 98
313 -47.25 -13.12 -54.38 3.88 98
314 -1.75 -16.88 -28.12 3.87 49
315 33.25 -28.12 65.62 3.87 344
315a 33.25 -13.12 65.62 3.63
315b 26.25 -20.62 65.62 3.49
316 19.25 35.62 1.88 3.87 147
317 33.25 5.62 28.12 3.86 49
318 -47.25 16.88 -24.38 3.86 49
319 -54.25 -24.38 -39.38 3.86 98
320 22.75 -16.88 43.12 3.86 49
321 -47.25 20.62 46.88 3.86 49
322 57.75 -20.62 28.12 3.85 49
323 36.75 1.88 20.62 3.85 98
324 -47.25 -39.38 16.88 3.85 49
325 50.75 -50.62 9.38 3.85 98
326 -54.25 -20.62 -50.62 3.85 49
327 36.75 -39.38 -69.38 3.85 49
328 15.75 -73.12 -31.88 3.85 49
329 -26.25 -35.62 -9.38 3.85 147
330 19.25 20.62 20.62 3.84 147
331 -19.25 -20.62 -35.62 3.84 98
332 12.25 -9.38 31.88 3.83 196
333 -33.25 -35.62 46.88 3.83 98
334 1.75 16.88 -39.38 3.83 246
334a -1.75 24.38 -39.38 3.64
335 -29.75 -46.88 -13.12 3.82 49
336 26.25 -65.62 46.88 3.82 49
337 1.75 -20.62 -35.62 3.82 49
338 26.25 5.62 5.62 3.82 98
339 -54.25 -39.38 1.88 3.81 246
339a -57.75 -46.88 -1.88 3.78
340 -40.25 16.88 24.38 3.81 98
341 -1.75 -43.12 -9.38 3.81 49
342 -5.25 -84.38 -20.62 3.81 49
343 33.25 -35.62 -5.62 3.80 49
344 1.75 -35.62 -61.88 3.78 98
345 -1.75 -28.12 20.62 3.78 98
346 1.75 -58.12 -13.12 3.78 49
347 -36.75 61.88 16.88 3.78 98
348 12.25 -46.88 -46.88 3.78 49
349 -12.25 -20.62 -46.88 3.78 49
350 29.75 16.88 35.62 3.78 49
351 26.25 13.12 9.38 3.77 98
352 15.75 -20.62 -20.62 3.77 49
353 -33.25 35.62 -24.38 3.77 98
354 8.75 -24.38 9.38 3.77 49
355 -22.75 -50.62 54.38 3.76 49
356 36.75 -73.12 -9.38 3.76 49
357 8.75 -73.12 35.62 3.76 49
358 -1.75 -16.88 24.38 3.76 49
359 -15.75 -16.88 -43.12 3.76 49
360 22.75 -73.12 -5.62 3.76 49
361 12.25 16.88 -50.62 3.76 49
362 -12.25 54.38 -9.38 3.75 98
363 22.75 24.38 43.12 3.75 147
364 19.25 43.12 -5.62 3.75 49
365 -12.25 -39.38 -5.62 3.75 344
366 43.75 -5.62 -13.12 3.74 49
367 47.25 13.12 -20.62 3.74 49
368 -54.25 -9.38 20.62 3.74 98
369 12.25 -35.62 9.38 3.74 49
370 -57.75 -1.88 -13.12 3.74 98
371 -33.25 -43.12 -28.12 3.74 196
372 47.25 13.12 5.62 3.74 98
373 1.75 -84.38 -16.88 3.74 49
374 40.25 28.12 -39.38 3.74 49
375 33.25 50.62 24.38 3.74 98
376 -1.75 -9.38 69.38 3.74 98
377 19.25 -16.88 16.88 3.74 98
378 -33.25 65.62 20.62 3.73 98
379 -29.75 16.88 -5.62 3.73 49
380 22.75 46.88 5.62 3.73 49
381 1.75 -16.88 -24.38 3.73 49
382 12.25 -65.62 -13.12 3.73 49
383 22.75 16.88 50.62 3.73 98
384 19.25 -50.62 -73.12 3.73 49
385 -33.25 -43.12 58.12 3.72 98
386 -47.25 -58.12 -28.12 3.72 49
387 19.25 9.38 20.62 3.72 49
388 -5.25 -43.12 69.38 3.72 147
389 -8.75 39.38 5.62 3.72 49
390 26.25 20.62 -24.38 3.71 98
391 -29.75 35.62 -1.88 3.71 49
392 33.25 43.12 -16.88 3.71 49
393 40.25 -58.12 5.62 3.71 98
394 40.25 -5.62 46.88 3.70 147
395 33.25 -9.38 -9.38 3.70 49
396 -68.25 -24.38 13.12 3.70 49
397 -15.75 -76.88 20.62 3.70 49
398 43.75 31.88 5.62 3.70 49
399 1.75 65.62 -16.88 3.70 98
400 26.25 -20.62 20.62 3.70 49
401 47.25 20.62 5.62 3.70 98
402 -29.75 20.62 -24.38 3.70 49
403 -47.25 46.88 20.62 3.70 49
404 15.75 1.88 35.62 3.69 49
405 40.25 -43.12 -28.12 3.69 49
406 -40.25 39.38 43.12 3.69 246
407 -54.25 -35.62 -5.62 3.69 49
408 -12.25 -20.62 -61.88 3.69 49
409 -50.75 13.12 -39.38 3.68 49
410 5.25 1.88 13.12 3.68 98
411 43.75 -69.38 -1.88 3.68 49
412 -22.75 -80.62 1.88 3.68 49
413 -36.75 -31.88 -46.88 3.68 49
414 26.25 -39.38 35.62 3.68 98
415 8.75 28.12 -24.38 3.67 49
416 -15.75 5.62 65.62 3.67 98
417 5.25 -65.62 -13.12 3.67 98
418 54.25 -5.62 13.12 3.67 49
419 -33.25 46.88 35.62 3.67 98
420 33.25 -20.62 -9.38 3.67 49
421 36.75 -31.88 13.12 3.66 49
422 36.75 35.62 16.88 3.66 344
423 -36.75 -35.62 39.38 3.66 49
424 1.75 9.38 -16.88 3.65 49
425 -47.25 -13.12 35.62 3.65 49
426 -50.75 5.62 -9.38 3.65 49
427 19.25 -9.38 35.62 3.65 49
428 -5.25 -20.62 1.88 3.65 49
429 57.75 -39.38 5.62 3.64 49
430 -36.75 16.88 1.88 3.64 49
431 -36.75 -13.12 9.38 3.64 49
432 -8.75 -39.38 -31.88 3.64 49
433 12.25 -1.88 -69.38 3.64 98
434 -1.75 -9.38 31.88 3.64 98
435 -15.75 -50.62 -31.88 3.63 196
436 -40.25 -16.88 -50.62 3.63 49
437 29.75 -16.88 58.12 3.62 49
438 43.75 24.38 -5.62 3.62 49
439 -1.75 -43.12 -31.88 3.62 49
440 -8.75 46.88 24.38 3.62 98
441 19.25 -61.88 35.62 3.61 49
442 -12.25 -16.88 -65.62 3.61 49
443 50.75 50.62 -1.88 3.61 49
444 33.25 -50.62 -28.12 3.61 49
445 -8.75 39.38 -28.12 3.61 49
446 22.75 -5.62 20.62 3.61 147
447 50.75 -43.12 9.38 3.61 49
448 -54.25 -28.12 -16.88 3.61 49
449 -12.25 16.88 20.62 3.61 147
450 -22.75 -5.62 -1.88 3.60 49
451 29.75 35.62 39.38 3.60 49
452 -47.25 -24.38 -5.62 3.60 49
453 12.25 61.88 5.62 3.60 49
454 -43.75 43.12 5.62 3.59 49
455 33.25 -28.12 58.12 3.59 49
456 19.25 28.12 31.88 3.59 49
457 -19.25 -61.88 20.62 3.59 49
458 57.75 35.62 28.12 3.58 98
459 33.25 -35.62 -35.62 3.58 49
460 -19.25 -9.38 -65.62 3.58 49
461 -40.25 -46.88 -5.62 3.58 98
462 5.25 -80.62 -1.88 3.58 49
463 -15.75 -5.62 1.88 3.58 98
464 29.75 -1.88 -20.62 3.58 49
465 5.25 5.62 -69.38 3.57 49
466 5.25 -9.38 -20.62 3.57 49
467 15.75 -13.12 -73.12 3.57 98
468 -57.75 -9.38 16.88 3.57 147
469 -1.75 1.88 69.38 3.56 98
470 -43.75 13.12 13.12 3.56 98
471 26.25 31.88 43.12 3.56 49
472 -33.25 73.12 20.62 3.56 49
473 36.75 20.62 31.88 3.56 49
474 -12.25 13.12 58.12 3.56 49
475 -43.75 58.12 20.62 3.56 98
476 -29.75 -24.38 -9.38 3.55 49
477 -33.25 -16.88 -5.62 3.55 49
478 -12.25 5.62 35.62 3.55 295
479 19.25 -31.88 -16.88 3.55 49
480 -61.25 -16.88 9.38 3.55 49
481 50.75 -13.12 5.62 3.54 49
482 -26.25 -35.62 54.38 3.54 49
483 26.25 -54.38 -13.12 3.54 98
484 -1.75 46.88 54.38 3.54 98
485 47.25 28.12 -39.38 3.54 49
486 -29.75 43.12 39.38 3.54 98
487 -47.25 43.12 9.38 3.54 49
488 57.75 -13.12 16.88 3.54 49
489 -40.25 13.12 -43.12 3.53 49
490 22.75 69.38 5.62 3.53 98
491 -12.25 -76.88 -9.38 3.53 49
492 -1.75 -50.62 -16.88 3.52 49
493 -5.25 43.12 -16.88 3.52 49
494 -5.25 1.88 1.88 3.52 49
495 -22.75 1.88 28.12 3.52 49
496 -1.75 9.38 9.38 3.52 49
497 22.75 -54.38 61.88 3.52 49
498 19.25 -84.38 -20.62 3.52 49
499 40.25 -28.12 -69.38 3.52 98
500 40.25 39.38 28.12 3.52 49
501 15.75 20.62 43.12 3.51 49
502 22.75 -24.38 1.88 3.51 49
503 22.75 -1.88 5.62 3.51 49
504 -47.25 -1.88 -20.62 3.51 49
505 43.75 9.38 -39.38 3.51 49
506 19.25 -58.12 -13.12 3.51 49
507 1.75 -58.12 9.38 3.50 49
508 -29.75 -65.62 -20.62 3.50 49
509 -50.75 -9.38 -13.12 3.50 49
510 15.75 -73.12 -20.62 3.50 49
511 40.25 65.62 31.88 3.50 49
512 26.25 -5.62 -1.88 3.50 49
513 -8.75 -13.12 5.62 3.50 49
514 5.25 -16.88 69.38 3.49 49
515 19.25 46.88 39.38 3.49 49
516 -29.75 -80.62 20.62 3.48 49
517 61.25 -35.62 35.62 3.48 49
518 36.75 50.62 -16.88 3.48 49
519 40.25 -35.62 50.62 3.48 49
520 -1.75 -5.62 -73.12 3.48 49
521 19.25 -31.88 -54.38 3.47 49
522 -33.25 1.88 31.88 3.47 98
523 47.25 5.62 31.88 3.47 49
524 15.75 1.88 58.12 3.47 98
525 -36.75 -46.88 9.38 3.47 98
526 15.75 -24.38 -73.12 3.47 49
527 -36.75 61.88 9.38 3.47 49
528 -8.75 39.38 31.88 3.46 49
529 -40.25 -69.38 31.88 3.46 49
530 5.25 -50.62 -5.62 3.46 49
531 -47.25 1.88 -28.12 3.45 49
532 12.25 69.38 -13.12 3.45 49
533 33.25 39.38 28.12 3.45 49
534 -43.75 35.62 31.88 3.45 98
535 -1.75 20.62 -16.88 3.45 147
536 47.25 16.88 39.38 3.45 49
537 36.75 -46.88 9.38 3.45 49
538 -19.25 -50.62 -46.88 3.45 49
539 36.75 -54.38 -28.12 3.44 49
540 1.75 28.12 -5.62 3.44 49
541 -1.75 -28.12 58.12 3.44 49
542 19.25 -61.88 -46.88 3.44 98
543 12.25 5.62 13.12 3.44 49
544 -64.75 20.62 5.62 3.44 98
545 40.25 -9.38 -31.88 3.44 49
546 -1.75 -9.38 -28.12 3.43 49
547 5.25 -16.88 -20.62 3.43 49
548 19.25 -13.12 28.12 3.43 49
549 -64.75 -35.62 -1.88 3.43 49
550 1.75 -1.88 -20.62 3.43 49
551 33.25 -24.38 -58.12 3.43 49
552 33.25 -43.12 -35.62 3.43 49
553 -19.25 -16.88 9.38 3.42 49
554 26.25 80.62 24.38 3.42 49
555 8.75 13.12 16.88 3.42 49
556 54.25 -28.12 24.38 3.42 49
557 -22.75 -28.12 31.88 3.42 49
558 54.25 -28.12 31.88 3.42 49
559 1.75 84.38 1.88 3.42 49
560 47.25 31.88 -24.38 3.42 49
561 -12.25 -50.62 -24.38 3.42 49
562 -36.75 -5.62 -20.62 3.41 49
563 -15.75 -73.12 39.38 3.41 98
564 -15.75 35.62 5.62 3.41 49
565 47.25 -31.88 -39.38 3.41 98
566 26.25 -16.88 -58.12 3.41 49
567 12.25 -9.38 -24.38 3.41 49
568 -19.25 -43.12 31.88 3.41 49
569 -19.25 -31.88 -69.38 3.41 98
570 -43.75 50.62 28.12 3.40 49
571 40.25 13.12 -46.88 3.40 49
572 19.25 -46.88 31.88 3.40 49
573 12.25 -9.38 43.12 3.40 49
574 40.25 -9.38 28.12 3.40 49
575 33.25 5.62 50.62 3.40 49
576 15.75 -16.88 5.62 3.40 49
577 22.75 54.38 16.88 3.40 49
578 -22.75 -54.38 39.38 3.40 49
579 50.75 -20.62 -43.12 3.39 49
580 12.25 -1.88 24.38 3.39 49
581 -29.75 -20.62 -69.38 3.39 49
582 12.25 -35.62 -16.88 3.39 49
583 12.25 -84.38 -5.62 3.39 49
584 -29.75 -1.88 -1.88 3.38 49
585 -36.75 -50.62 -16.88 3.38 49
586 -5.25 -31.88 -13.12 3.38 147
587 -1.75 5.62 -39.38 3.38 49
588 -50.75 1.88 9.38 3.38 49
589 -22.75 24.38 20.62 3.38 49
590 22.75 39.38 20.62 3.38 49
591 -12.25 16.88 -50.62 3.38 49
592 -8.75 -9.38 -20.62 3.38 49
593 8.75 24.38 39.38 3.38 49
594 40.25 -35.62 -58.12 3.38 98
595 -33.25 -1.88 13.12 3.38 49
596 -50.75 -1.88 16.88 3.37 98
597 -36.75 -16.88 -46.88 3.37 49
598 47.25 -20.62 20.62 3.37 49
599 22.75 -9.38 43.12 3.37 49
600 1.75 1.88 -16.88 3.36 49
601 19.25 -28.12 -24.38 3.36 49
602 -22.75 -28.12 -65.62 3.36 49
603 -22.75 -28.12 -13.12 3.36 98
604 -19.25 -43.12 46.88 3.36 49
605 -5.25 76.88 5.62 3.36 49
606 68.25 -28.12 16.88 3.36 49
607 -8.75 -35.62 65.62 3.36 49
608 -33.25 -24.38 -65.62 3.35 49
609 -22.75 54.38 -20.62 3.35 49
610 8.75 -5.62 -24.38 3.35 49
611 5.25 46.88 13.12 3.35 98
612 -26.25 -43.12 54.38 3.35 49
613 15.75 35.62 5.62 3.35 49
614 -33.25 -58.12 -1.88 3.35 49
615 -8.75 -54.38 -31.88 3.35 49
616 26.25 28.12 -43.12 3.34 98
617 -29.75 39.38 35.62 3.34 49
618 8.75 -76.88 9.38 3.34 49
619 -29.75 -1.88 -46.88 3.34 49
620 12.25 -35.62 65.62 3.34 98
621 54.25 1.88 9.38 3.34 49
622 -22.75 20.62 -1.88 3.34 49
623 33.25 -76.88 -28.12 3.34 49
624 -1.75 -1.88 -5.62 3.34 49
625 47.25 -35.62 16.88 3.33 49
626 -15.75 -46.88 -24.38 3.33 49
627 -47.25 -61.88 20.62 3.33 49
628 -22.75 -54.38 -35.62 3.33 49
629 -5.25 1.88 -58.12 3.33 49
630 5.25 -61.88 -46.88 3.33 49
631 33.25 -46.88 54.38 3.33 147
632 26.25 -80.62 1.88 3.33 49
633 -43.75 -35.62 -1.88 3.33 98
634 36.75 -24.38 -31.88 3.33 49
635 26.25 -5.62 -13.12 3.32 49
636 -36.75 -73.12 -9.38 3.32 98
637 -47.25 -1.88 -13.12 3.32 49
638 33.25 -35.62 -46.88 3.32 49
639 -50.75 13.12 35.62 3.32 98
640 -12.25 -13.12 -73.12 3.32 49
641 -50.75 -58.12 1.88 3.32 49
642 8.75 20.62 -35.62 3.32 49
643 -36.75 -46.88 -24.38 3.32 98
644 -5.25 -54.38 -54.38 3.32 49
645 -29.75 9.38 61.88 3.31 147
646 15.75 -46.88 20.62 3.31 49
647 19.25 -9.38 -5.62 3.31 49
648 36.75 -24.38 9.38 3.31 49
649 -1.75 -16.88 -58.12 3.31 49
650 -19.25 -50.62 39.38 3.31 98
651 -19.25 -54.38 13.12 3.31 49
652 54.25 -16.88 -1.88 3.30 49
653 -12.25 20.62 13.12 3.30 49
654 -36.75 9.38 54.38 3.30 49
655 29.75 -46.88 -31.88 3.30 49
656 -12.25 -35.62 -58.12 3.30 49
657 15.75 -16.88 54.38 3.30 49
658 -26.25 50.62 28.12 3.30 49
659 61.25 1.88 24.38 3.30 49
660 15.75 -16.88 -58.12 3.30 49
661 1.75 -69.38 46.88 3.29 49
662 -8.75 54.38 43.12 3.29 49
663 -26.25 -31.88 -58.12 3.29 49
664 5.25 -73.12 -16.88 3.29 49
665 15.75 28.12 13.12 3.29 49
666 -12.25 13.12 65.62 3.29 49
667 -40.25 16.88 -9.38 3.29 49
668 -12.25 -9.38 -24.38 3.29 49
669 -15.75 -39.38 -9.38 3.29 49
670 -26.25 -24.38 -5.62 3.29 49
671 33.25 -39.38 -58.12 3.29 49
672 29.75 -9.38 9.38 3.28 49
673 -5.25 39.38 50.62 3.28 49
674 -29.75 -31.88 -31.88 3.28 49
675 50.75 39.38 -9.38 3.28 49
676 -36.75 -9.38 31.88 3.28 49
677 -15.75 80.62 5.62 3.28 49
678 22.75 -76.88 -1.88 3.28 49
679 26.25 -80.62 -9.38 3.27 49
680 5.25 -20.62 -31.88 3.27 49
681 -33.25 24.38 -28.12 3.27 49
682 -47.25 9.38 -9.38 3.27 49
683 40.25 -13.12 -5.62 3.27 49
684 -12.25 -20.62 -13.12 3.27 49
685 -19.25 65.62 39.38 3.26 49
686 -40.25 39.38 35.62 3.26 49
687 33.25 28.12 13.12 3.26 49
688 19.25 9.38 50.62 3.26 49
689 22.75 -13.12 73.12 3.26 49
690 -29.75 1.88 -39.38 3.26 49
691 -12.25 46.88 46.88 3.26 49
692 -50.75 -61.88 -28.12 3.26 49
693 -29.75 35.62 -9.38 3.26 49
694 -47.25 46.88 28.12 3.25 49
695 -54.25 24.38 24.38 3.25 49
696 -5.25 20.62 13.12 3.25 49
697 43.75 -39.38 -43.12 3.25 49
698 29.75 -43.12 58.12 3.25 49
699 -22.75 -39.38 -20.62 3.24 49
700 47.25 -54.38 13.12 3.24 49
701 12.25 -50.62 39.38 3.24 49
702 -12.25 -39.38 5.62 3.24 49
703 -40.25 -50.62 28.12 3.24 49
704 -1.75 -69.38 -13.12 3.24 49
705 15.75 5.62 -5.62 3.23 49
706 40.25 -5.62 58.12 3.23 49
707 -15.75 -43.12 -65.62 3.23 49
708 22.75 -50.62 35.62 3.23 49
709 40.25 5.62 39.38 3.23 49
710 50.75 -61.88 -13.12 3.23 49
711 47.25 -13.12 28.12 3.23 49
712 -5.25 5.62 -16.88 3.23 49
713 57.75 -24.38 -28.12 3.22 49
714 -33.25 -28.12 35.62 3.22 49
715 -12.25 1.88 20.62 3.22 49
716 -26.25 43.12 31.88 3.22 49
717 -19.25 -16.88 1.88 3.22 49
718 1.75 -5.62 65.62 3.22 49
719 -29.75 13.12 54.38 3.22 49
720 5.25 54.38 1.88 3.22 49
721 5.25 -13.12 -39.38 3.22 49
722 -5.25 9.38 43.12 3.22 49
723 -36.75 61.88 28.12 3.21 49
724 -12.25 -16.88 9.38 3.21 49
725 -64.75 -9.38 -9.38 3.21 49
726 50.75 -13.12 43.12 3.21 49
727 29.75 -50.62 -13.12 3.21 49
728 40.25 -9.38 -13.12 3.21 49
729 -47.25 -20.62 -1.88 3.21 49
730 -33.25 16.88 -46.88 3.21 49
731 -47.25 9.38 28.12 3.21 49
732 36.75 -50.62 -1.88 3.21 49
733 -36.75 -46.88 46.88 3.21 49
734 15.75 28.12 -5.62 3.20 49
735 -19.25 -54.38 -43.12 3.20 49
736 -57.75 -31.88 24.38 3.20 98
737 -15.75 -16.88 -28.12 3.20 98
738 50.75 -16.88 28.12 3.20 49
739 1.75 -65.62 -43.12 3.19 49
740 -29.75 -24.38 -16.88 3.19 49
741 19.25 -1.88 50.62 3.19 49
742 -22.75 -20.62 -31.88 3.19 49
743 -68.25 -24.38 5.62 3.19 49
744 19.25 -20.62 39.38 3.19 49
745 33.25 -20.62 28.12 3.19 49
746 -40.25 -5.62 35.62 3.19 49
747 12.25 -58.12 46.88 3.19 98
748 -26.25 -76.88 35.62 3.19 49
749 -8.75 -65.62 -43.12 3.18 49
750 -22.75 20.62 -46.88 3.18 49
751 -40.25 -65.62 -31.88 3.18 49
752 -47.25 -20.62 -43.12 3.18 49
753 -50.75 50.62 13.12 3.18 49
754 40.25 -43.12 9.38 3.18 98
755 19.25 -84.38 24.38 3.18 49
756 -36.75 -69.38 13.12 3.18 49
757 29.75 -1.88 -54.38 3.18 49
758 26.25 16.88 -20.62 3.18 49
759 43.75 -9.38 54.38 3.18 98
760 -19.25 -31.88 24.38 3.18 49
761 -19.25 43.12 -1.88 3.18 49
762 12.25 -65.62 1.88 3.17 49
763 40.25 -31.88 -35.62 3.17 49
764 -33.25 -39.38 -35.62 3.17 49
765 -19.25 31.88 43.12 3.17 49
766 26.25 -54.38 31.88 3.17 49
767 40.25 -13.12 -24.38 3.17 49
768 8.75 -13.12 -58.12 3.17 49
769 -43.75 16.88 -43.12 3.17 49
770 26.25 -54.38 46.88 3.16 49
771 -50.75 -35.62 -54.38 3.16 49
772 33.25 -35.62 -16.88 3.16 98
773 -8.75 9.38 65.62 3.16 49
774 -29.75 -31.88 43.12 3.16 49
775 -19.25 -61.88 9.38 3.15 49
776 -40.25 -28.12 -9.38 3.15 49
777 -40.25 54.38 24.38 3.15 49
778 -19.25 -65.62 -20.62 3.15 49
779 -19.25 -9.38 -35.62 3.15 49
780 -47.25 31.88 -24.38 3.15 49
781 -50.75 -16.88 -13.12 3.15 49
782 -22.75 -5.62 -9.38 3.15 49
783 -43.75 -5.62 43.12 3.15 49
784 15.75 46.88 46.88 3.15 49
785 26.25 -20.62 58.12 3.15 49
786 12.25 1.88 20.62 3.15 49
787 -12.25 -5.62 -20.62 3.15 49
788 22.75 13.12 20.62 3.15 49
789 -15.75 54.38 5.62 3.14 49
790 43.75 5.62 -31.88 3.14 49
791 40.25 -28.12 35.62 3.14 49
792 -19.25 -31.88 -58.12 3.14 49
793 -54.25 24.38 -13.12 3.14 49
794 -15.75 -69.38 -43.12 3.14 49
795 15.75 16.88 -16.88 3.14 49
796 29.75 -39.38 -54.38 3.13 49
797 68.25 -28.12 9.38 3.13 49
798 40.25 -76.88 -9.38 3.13 49
799 8.75 -24.38 24.38 3.13 49
800 12.25 5.62 -54.38 3.13 49
801 57.75 35.62 -5.62 3.13 49
802 22.75 31.88 28.12 3.13 49
803 26.25 5.62 69.38 3.13 49
804 -50.75 50.62 -1.88 3.13 49
805 8.75 -20.62 -28.12 3.13 49
806 -1.75 -58.12 -16.88 3.13 49
807 47.25 -24.38 9.38 3.13 49
808 19.25 -28.12 9.38 3.13 49
809 -5.25 -58.12 -13.12 3.12 49
810 -19.25 -9.38 69.38 3.12 49
811 40.25 -69.38 9.38 3.12 49
812 -12.25 -54.38 -9.38 3.12 49
813 -54.25 -24.38 -31.88 3.12 49
814 -15.75 -43.12 1.88 3.12 49
815 43.75 1.88 46.88 3.12 49
816 33.25 -50.62 46.88 3.12 49
817 -1.75 -16.88 1.88 3.12 49
818 -12.25 -84.38 -5.62 3.12 49
819 -22.75 13.12 1.88 3.12 147
820 -26.25 9.38 -1.88 3.12 49
821 26.25 -43.12 5.62 3.12 49
822 29.75 -46.88 -43.12 3.11 49
823 5.25 84.38 16.88 3.11 49
824 8.75 54.38 5.62 3.11 49
825 -5.25 16.88 35.62 3.11 49
826 47.25 39.38 13.12 3.11 98
827 33.25 -24.38 -28.12 3.11 49
828 -15.75 16.88 -35.62 3.11 49
829 -33.25 -43.12 -61.88 3.11 49
830 12.25 -35.62 -61.88 3.11 49
831 12.25 -69.38 5.62 3.11 49
832 1.75 50.62 16.88 3.11 49
833 36.75 39.38 5.62 3.11 49
834 -36.75 -24.38 -61.88 3.11 49
835 -57.75 -24.38 5.62 3.11 49
836 22.75 73.12 31.88 3.10 49
837 26.25 9.38 24.38 3.10 49
838 -1.75 -1.88 24.38 3.10 49
839 -36.75 5.62 65.62 3.10 49
840 47.25 5.62 -1.88 3.10 49
841 12.25 5.62 5.62 3.10 49
842 1.75 54.38 13.12 3.10 49
843 -47.25 50.62 -9.38 3.10 49
844 -61.25 20.62 -24.38 3.10 49
845 8.75 39.38 20.62 3.10 49
846 19.25 -73.12 -1.88 3.09 49
847 22.75 9.38 46.88 3.09 49
848 -26.25 -39.38 -35.62 3.09 49

house

Stat map plot for the contrast: house
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -22.75 -39.38 -1.88 5.50 442
2 22.75 20.62 9.38 5.43 787
2a 22.75 24.38 16.88 4.16
2b 26.25 13.12 13.12 3.88
2c 15.75 28.12 13.12 3.73
3 -22.75 24.38 13.12 5.29 885
3a -22.75 16.88 5.62 4.27
3b -15.75 28.12 16.88 4.03
4 22.75 13.12 20.62 5.25 98
5 47.25 -54.38 -16.88 5.20 98
6 33.25 -43.12 -35.62 4.65 393
7 -29.75 28.12 5.62 4.60 98
8 22.75 -5.62 20.62 4.57 49
9 -33.25 -58.12 35.62 4.53 49
10 36.75 -54.38 -20.62 4.52 49
11 12.25 24.38 20.62 4.51 147
12 -50.75 9.38 -28.12 4.44 49
13 -40.25 -58.12 28.12 4.41 98
14 22.75 -31.88 1.88 4.39 49
15 22.75 -43.12 -31.88 4.38 49
16 33.25 5.62 -39.38 4.37 49
17 26.25 5.62 9.38 4.35 49
18 1.75 13.12 -16.88 4.33 49
19 8.75 -16.88 31.88 4.33 49
20 33.25 28.12 28.12 4.25 49
21 26.25 9.38 -31.88 4.23 49
22 -22.75 5.62 24.38 4.23 393
23 1.75 -46.88 -5.62 4.21 49
24 -26.25 39.38 46.88 4.21 196
25 19.25 5.62 43.12 4.21 98
26 43.75 -1.88 20.62 4.19 98
27 8.75 -24.38 24.38 4.16 49
28 19.25 -13.12 24.38 4.16 98
29 15.75 -39.38 13.12 4.13 49
30 -12.25 -16.88 -20.62 4.12 49
31 -29.75 16.88 9.38 4.11 49
32 -22.75 20.62 20.62 4.10 147
33 -12.25 -28.12 -76.88 4.08 49
34 26.25 -61.88 31.88 4.07 49
35 15.75 -54.38 5.62 4.05 49
36 -54.25 -20.62 -9.38 4.03 49
37 -15.75 -46.88 20.62 4.02 98
38 26.25 -1.88 13.12 4.00 49
39 -15.75 -35.62 -1.88 3.99 196
40 -12.25 -43.12 -16.88 3.97 49
41 -29.75 -31.88 35.62 3.96 49
42 -8.75 35.62 43.12 3.90 49
43 8.75 -9.38 31.88 3.88 98
44 5.25 -43.12 -1.88 3.87 196
45 -15.75 -50.62 24.38 3.87 49
46 -22.75 -9.38 -65.62 3.86 49
47 -15.75 -24.38 -9.38 3.85 196
48 -26.25 -50.62 -46.88 3.84 49
49 -8.75 -43.12 -9.38 3.84 49
50 22.75 -43.12 9.38 3.83 49
51 -8.75 -28.12 5.62 3.82 49
52 -12.25 -43.12 -50.62 3.82 49
53 -15.75 -31.88 -50.62 3.82 49
54 22.75 -39.38 46.88 3.81 49
55 22.75 -76.88 20.62 3.81 49
56 -40.25 -69.38 20.62 3.80 49
57 -29.75 -9.38 -31.88 3.78 49
58 -12.25 -39.38 46.88 3.77 49
59 5.25 31.88 50.62 3.77 49
60 -22.75 -58.12 24.38 3.75 49
61 -15.75 16.88 13.12 3.75 98
62 -1.75 -61.88 -39.38 3.75 49
63 50.75 -31.88 -50.62 3.74 49
64 50.75 50.62 -1.88 3.73 49
65 33.25 -50.62 -24.38 3.72 196
66 29.75 1.88 13.12 3.71 49
67 1.75 31.88 -13.12 3.69 49
68 26.25 9.38 -24.38 3.69 49
69 15.75 -28.12 -5.62 3.68 49
70 -43.75 58.12 9.38 3.67 49
71 -8.75 5.62 28.12 3.67 98
72 26.25 -13.12 54.38 3.66 49
73 33.25 -76.88 -24.38 3.64 49
74 -33.25 -24.38 35.62 3.64 49
75 19.25 -76.88 -16.88 3.63 98
76 -40.25 50.62 1.88 3.63 49
77 40.25 31.88 -24.38 3.62 49
78 33.25 43.12 50.62 3.62 49
79 26.25 -24.38 -69.38 3.62 49
80 33.25 9.38 1.88 3.62 49
81 -26.25 20.62 -1.88 3.62 49
82 22.75 -65.62 20.62 3.60 49
83 -15.75 20.62 1.88 3.60 49
84 -15.75 20.62 20.62 3.59 49
85 -33.25 -73.12 -31.88 3.58 49
86 22.75 -73.12 -13.12 3.58 49
87 57.75 -54.38 1.88 3.57 49
88 29.75 -43.12 -20.62 3.56 49
89 -22.75 -24.38 46.88 3.56 49
90 40.25 -13.12 -43.12 3.56 98
91 -29.75 -13.12 -20.62 3.55 49
92 -40.25 -28.12 -24.38 3.55 49
93 -43.75 -9.38 39.38 3.55 49
94 -26.25 -50.62 46.88 3.54 49
95 -26.25 13.12 16.88 3.54 98
96 -29.75 50.62 20.62 3.54 49
97 -22.75 -13.12 46.88 3.54 49
98 -36.75 24.38 13.12 3.53 49
99 22.75 -9.38 13.12 3.53 49
100 -12.25 1.88 -61.88 3.52 98
101 5.25 9.38 39.38 3.52 49
102 29.75 -54.38 -24.38 3.51 49
103 22.75 -43.12 31.88 3.51 49
104 5.25 -65.62 54.38 3.50 49
105 -50.75 31.88 9.38 3.49 49
106 -12.25 9.38 5.62 3.49 49
107 22.75 1.88 20.62 3.48 49
108 12.25 -5.62 -5.62 3.48 49
109 50.75 -43.12 -1.88 3.47 49
110 15.75 -1.88 69.38 3.46 49
111 26.25 -73.12 31.88 3.46 49
112 36.75 -61.88 -13.12 3.46 49
113 -1.75 39.38 -20.62 3.45 98
114 -26.25 -54.38 43.12 3.45 98
115 29.75 -46.88 -24.38 3.45 49
116 -57.75 20.62 13.12 3.45 49
117 -15.75 -50.62 -9.38 3.44 49
118 -26.25 -20.62 16.88 3.44 49
119 19.25 24.38 5.62 3.44 49
120 -26.25 1.88 13.12 3.44 49
121 -36.75 -61.88 35.62 3.44 49
122 61.25 -1.88 13.12 3.43 49
123 57.75 -16.88 16.88 3.43 49
124 15.75 1.88 58.12 3.43 49
125 -36.75 -65.62 -16.88 3.43 49
126 22.75 -46.88 -20.62 3.42 49
127 12.25 -31.88 -73.12 3.42 49
128 22.75 -16.88 16.88 3.42 49
129 33.25 54.38 28.12 3.41 49
130 -33.25 9.38 5.62 3.41 49
131 43.75 35.62 46.88 3.41 49
132 15.75 -28.12 24.38 3.41 49
133 -26.25 -76.88 -9.38 3.39 49
134 22.75 -13.12 20.62 3.39 49
135 -40.25 -46.88 39.38 3.39 49
136 -33.25 61.88 39.38 3.38 49
137 -36.75 -69.38 31.88 3.38 98
138 8.75 -61.88 -50.62 3.38 49
139 22.75 5.62 24.38 3.38 49
140 5.25 -20.62 -13.12 3.38 49
141 19.25 -35.62 -28.12 3.38 49
142 -15.75 -61.88 43.12 3.37 196
143 -33.25 13.12 -1.88 3.37 49
144 22.75 -46.88 -5.62 3.37 49
145 -15.75 -20.62 -28.12 3.37 49
146 12.25 -13.12 54.38 3.37 49
147 29.75 5.62 39.38 3.36 49
148 26.25 -20.62 24.38 3.36 49
149 15.75 -73.12 -28.12 3.36 49
150 -8.75 61.88 -16.88 3.36 49
151 -36.75 -50.62 -16.88 3.36 49
152 -64.75 -24.38 -20.62 3.35 49
153 -57.75 16.88 5.62 3.34 49
154 -15.75 58.12 5.62 3.34 49
155 -26.25 16.88 50.62 3.34 49
156 40.25 -39.38 13.12 3.34 49
157 36.75 -13.12 -31.88 3.34 49
158 26.25 -16.88 -9.38 3.34 49
159 15.75 16.88 50.62 3.34 49
160 -54.25 -13.12 -1.88 3.34 49
161 40.25 -50.62 -58.12 3.34 98
162 -8.75 -24.38 1.88 3.33 49
163 -22.75 -16.88 24.38 3.33 49
164 -1.75 28.12 61.88 3.33 49
165 26.25 -58.12 -16.88 3.33 98
166 54.25 9.38 -31.88 3.33 49
167 -22.75 35.62 -24.38 3.32 49
168 8.75 -80.62 -5.62 3.32 49
169 40.25 -16.88 -46.88 3.32 49
170 -15.75 -5.62 -13.12 3.31 98
171 -47.25 -76.88 9.38 3.31 49
172 -40.25 -1.88 24.38 3.30 49
173 33.25 -28.12 -13.12 3.30 49
174 8.75 -58.12 -24.38 3.29 49
175 19.25 -50.62 -13.12 3.29 49
176 12.25 -73.12 -13.12 3.29 49
177 -1.75 -31.88 13.12 3.29 49
178 47.25 -9.38 20.62 3.29 98
179 5.25 -35.62 -28.12 3.28 49
180 15.75 -50.62 9.38 3.28 49
181 29.75 1.88 -16.88 3.28 49
182 -19.25 61.88 20.62 3.28 49
183 -15.75 -20.62 1.88 3.27 49
184 5.25 -50.62 -5.62 3.27 49
185 36.75 -39.38 -24.38 3.27 49
186 -26.25 -20.62 -13.12 3.27 49
187 29.75 -16.88 46.88 3.26 49
188 15.75 -5.62 -16.88 3.26 49
189 26.25 -76.88 -16.88 3.26 49
190 26.25 -13.12 13.12 3.25 49
191 -12.25 50.62 -24.38 3.25 49
192 19.25 35.62 20.62 3.25 49
193 8.75 -5.62 -9.38 3.25 49
194 -15.75 -43.12 13.12 3.25 49
195 -36.75 -39.38 -46.88 3.24 49
196 -26.25 31.88 20.62 3.24 49
197 -12.25 13.12 1.88 3.24 98
198 12.25 -35.62 31.88 3.24 49
199 -40.25 24.38 35.62 3.24 49
200 -33.25 -61.88 39.38 3.24 49
201 -15.75 31.88 5.62 3.24 49
202 26.25 5.62 69.38 3.24 49
203 -40.25 43.12 46.88 3.24 49
204 50.75 -46.88 1.88 3.23 49
205 -8.75 -46.88 -31.88 3.23 49
206 -26.25 -80.62 -1.88 3.23 49
207 -19.25 5.62 61.88 3.23 49
208 19.25 -35.62 1.88 3.23 49
209 -40.25 -65.62 31.88 3.23 49
210 -15.75 -1.88 -16.88 3.22 49
211 33.25 13.12 -5.62 3.22 49
212 33.25 28.12 -46.88 3.21 49
213 12.25 5.62 61.88 3.21 49
214 -40.25 -24.38 -28.12 3.21 49
215 22.75 -54.38 -16.88 3.21 49
216 -43.75 31.88 31.88 3.20 49
217 15.75 -46.88 -58.12 3.20 49
218 8.75 43.12 -5.62 3.20 49
219 -26.25 16.88 -13.12 3.19 49
220 -12.25 -58.12 -46.88 3.19 49
221 1.75 -39.38 -1.88 3.19 49
222 22.75 46.88 -20.62 3.19 49
223 57.75 16.88 20.62 3.18 49
224 15.75 24.38 -13.12 3.18 49
225 -15.75 31.88 24.38 3.18 49
226 -12.25 24.38 -13.12 3.18 49
227 47.25 -50.62 -20.62 3.18 49
228 -15.75 -61.88 24.38 3.18 49
229 29.75 5.62 65.62 3.18 49
230 43.75 20.62 16.88 3.17 49
231 -15.75 28.12 28.12 3.17 49
232 29.75 -24.38 -54.38 3.17 49
233 -19.25 31.88 20.62 3.17 49
234 -22.75 35.62 20.62 3.17 49
235 36.75 -46.88 -9.38 3.17 49
236 -26.25 -31.88 -69.38 3.16 49
237 -12.25 43.12 -9.38 3.16 49
238 15.75 -50.62 43.12 3.15 49
239 -29.75 20.62 13.12 3.15 49
240 -15.75 13.12 73.12 3.15 49
241 -33.25 50.62 16.88 3.15 49
242 -19.25 1.88 28.12 3.15 49
243 -22.75 -16.88 -13.12 3.14 49
244 -40.25 20.62 9.38 3.14 49
245 -50.75 -35.62 -1.88 3.14 49
246 22.75 16.88 5.62 3.13 49
247 29.75 31.88 24.38 3.13 49
248 19.25 65.62 28.12 3.13 49
249 -12.25 43.12 46.88 3.12 49
250 -43.75 -69.38 24.38 3.12 49
251 -33.25 -20.62 -31.88 3.12 49
252 64.75 -43.12 1.88 3.12 49
253 -8.75 5.62 -5.62 3.12 49
254 12.25 35.62 -5.62 3.11 49
255 -19.25 -9.38 -28.12 3.11 49
256 50.75 -13.12 35.62 3.11 49
257 -40.25 -39.38 39.38 3.10 49
258 26.25 -9.38 5.62 3.10 49
259 26.25 -20.62 -28.12 3.09 49

chair

Stat map plot for the contrast: chair
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 40.25 -46.88 13.12 5.02 147
2 12.25 35.62 -5.62 4.88 196
3 -50.75 39.38 16.88 4.65 49
4 -15.75 -1.88 -16.88 4.21 49
5 33.25 -58.12 -1.88 4.16 49
6 -36.75 -76.88 1.88 4.15 49
7 -29.75 20.62 46.88 4.12 98
8 -54.25 -43.12 46.88 4.09 49
9 12.25 28.12 -16.88 4.08 98
10 12.25 5.62 -24.38 4.06 98
11 33.25 43.12 -16.88 3.99 49
12 33.25 -58.12 -16.88 3.97 49
13 -22.75 -43.12 -31.88 3.97 98
14 8.75 -35.62 -35.62 3.94 49
15 26.25 -46.88 -35.62 3.93 49
16 -5.25 43.12 50.62 3.89 49
17 12.25 16.88 -20.62 3.88 49
18 -36.75 -61.88 43.12 3.85 98
19 -50.75 -39.38 -1.88 3.83 147
20 -15.75 20.62 13.12 3.81 49
21 -22.75 1.88 5.62 3.78 49
22 -57.75 -9.38 -1.88 3.73 49
23 -1.75 5.62 31.88 3.69 49
24 -57.75 13.12 1.88 3.67 98
25 -36.75 -46.88 50.62 3.65 49
26 33.25 13.12 -1.88 3.64 49
27 36.75 -24.38 20.62 3.62 49
28 54.25 20.62 5.62 3.61 49
29 22.75 24.38 16.88 3.61 49
30 33.25 -20.62 -58.12 3.55 49
31 -22.75 -9.38 20.62 3.53 49
32 -22.75 24.38 13.12 3.53 49
33 29.75 -43.12 -35.62 3.52 49
34 12.25 16.88 -50.62 3.51 49
35 12.25 -1.88 69.38 3.51 49
36 -15.75 -39.38 -54.38 3.50 49
37 26.25 -69.38 31.88 3.50 147
38 -22.75 -31.88 -69.38 3.49 49
39 36.75 -1.88 28.12 3.48 49
40 -22.75 50.62 9.38 3.47 49
41 -22.75 -39.38 -28.12 3.47 49
42 26.25 16.88 16.88 3.46 49
43 -22.75 9.38 24.38 3.46 49
44 33.25 13.12 61.88 3.44 49
45 19.25 20.62 20.62 3.43 98
46 12.25 9.38 -1.88 3.43 49
47 36.75 20.62 -43.12 3.42 49
48 19.25 76.88 31.88 3.41 49
49 1.75 24.38 -39.38 3.40 49
50 29.75 9.38 -16.88 3.36 49
51 -26.25 -1.88 -50.62 3.36 49
52 33.25 9.38 -13.12 3.35 49
53 -68.25 1.88 5.62 3.33 49
54 -15.75 -39.38 -24.38 3.33 98
55 5.25 -1.88 31.88 3.33 49
56 22.75 -46.88 -24.38 3.32 49
57 22.75 -24.38 -61.88 3.31 49
58 43.75 -28.12 -13.12 3.30 49
59 5.25 -58.12 -24.38 3.27 49
60 -43.75 9.38 -31.88 3.26 98
61 -50.75 -28.12 -1.88 3.26 49
62 22.75 13.12 20.62 3.26 49
63 -36.75 -28.12 -9.38 3.25 49
64 -36.75 -31.88 -50.62 3.24 49
65 26.25 35.62 24.38 3.23 49
66 36.75 -28.12 -9.38 3.23 49
67 -5.25 28.12 61.88 3.23 49
68 -22.75 -1.88 -1.88 3.22 49
69 33.25 54.38 24.38 3.21 49
70 -1.75 9.38 -16.88 3.21 49
71 -57.75 28.12 31.88 3.19 49
72 29.75 -20.62 -5.62 3.19 49
73 -8.75 -20.62 -80.62 3.18 49
74 -43.75 -65.62 24.38 3.18 49
75 1.75 28.12 -35.62 3.18 49
76 26.25 31.88 20.62 3.18 49
77 -22.75 46.88 13.12 3.16 49
78 12.25 -16.88 -28.12 3.16 49
79 -29.75 24.38 -13.12 3.16 49
80 -43.75 -1.88 5.62 3.15 49
81 -29.75 -43.12 -58.12 3.15 49
82 -54.25 -5.62 -13.12 3.15 49
83 40.25 -50.62 -1.88 3.15 49
84 43.75 -35.62 -1.88 3.14 49
85 -57.75 13.12 -16.88 3.14 49
86 64.75 -20.62 39.38 3.14 49
87 15.75 16.88 28.12 3.14 49
88 -50.75 -24.38 54.38 3.14 49
89 33.25 -31.88 39.38 3.14 49
90 -15.75 -5.62 69.38 3.14 49
91 29.75 13.12 -43.12 3.13 49
92 29.75 43.12 13.12 3.12 49
93 -5.25 35.62 54.38 3.12 49
94 -50.75 16.88 31.88 3.12 49
95 50.75 -58.12 -13.12 3.12 49
96 19.25 -39.38 13.12 3.12 49
97 -15.75 -76.88 -28.12 3.12 49
98 29.75 -5.62 9.38 3.11 49
99 36.75 46.88 -16.88 3.10 49
100 26.25 -65.62 43.12 3.10 49
101 -33.25 -46.88 16.88 3.09 49

scrambledpix

Stat map plot for the contrast: scrambledpix
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 1.75 24.38 -13.12 5.06 49
2 -29.75 -61.88 -31.88 4.96 49
3 -22.75 -46.88 43.12 4.91 98
4 -15.75 61.88 -9.38 4.69 147
5 5.25 43.12 -28.12 4.49 49
6 -22.75 -9.38 20.62 4.29 49
7 -1.75 -35.62 5.62 4.17 98
8 50.75 16.88 -28.12 4.12 147
9 -1.75 5.62 31.88 4.04 49
10 40.25 -16.88 -39.38 3.93 98
11 -15.75 -43.12 -16.88 3.85 49
12 -64.75 -31.88 39.38 3.77 49
13 -1.75 -46.88 -9.38 3.75 49
14 50.75 5.62 -35.62 3.68 49
15 -22.75 -54.38 -9.38 3.64 147
16 22.75 -24.38 46.88 3.59 49
17 54.25 -9.38 16.88 3.55 49
18 19.25 43.12 13.12 3.51 49
19 22.75 46.88 -5.62 3.50 49
20 -29.75 -65.62 20.62 3.46 49
21 -22.75 -28.12 39.38 3.42 49
22 33.25 -20.62 43.12 3.40 49
23 -40.25 -16.88 -54.38 3.39 49
24 -26.25 -69.38 39.38 3.39 49
25 15.75 -39.38 -31.88 3.38 49
26 57.75 13.12 -9.38 3.38 49
27 -5.25 -50.62 61.88 3.33 49
28 26.25 -20.62 43.12 3.33 49
29 -22.75 -9.38 -65.62 3.31 49
30 -26.25 -65.62 16.88 3.31 49
31 -22.75 -31.88 -31.88 3.28 49
32 19.25 1.88 9.38 3.24 49
33 -26.25 13.12 -39.38 3.24 49
34 43.75 16.88 -13.12 3.24 49
35 -22.75 -24.38 -16.88 3.23 49
36 1.75 35.62 -24.38 3.23 49
37 33.25 -46.88 -24.38 3.22 49
38 -43.75 16.88 -9.38 3.22 49
39 -15.75 1.88 61.88 3.21 49
40 40.25 5.62 -39.38 3.20 49
41 1.75 -50.62 61.88 3.20 49
42 -1.75 -31.88 61.88 3.20 49
43 -33.25 13.12 28.12 3.19 49
44 -19.25 -73.12 39.38 3.19 49
45 33.25 1.88 35.62 3.19 49
46 -5.25 -35.62 -9.38 3.18 49
47 54.25 -46.88 -9.38 3.18 49
48 1.75 9.38 31.88 3.17 98
49 1.75 -43.12 -1.88 3.17 49
50 15.75 -61.88 24.38 3.17 49
51 36.75 50.62 1.88 3.16 49
52 -15.75 -58.12 20.62 3.16 49
53 -8.75 -54.38 -13.12 3.15 49
54 1.75 1.88 31.88 3.13 49
55 -26.25 39.38 35.62 3.13 49
56 -15.75 -61.88 -46.88 3.12 49
57 5.25 -28.12 20.62 3.12 49
58 -50.75 9.38 -39.38 3.12 49
59 -19.25 -58.12 -16.88 3.11 49
60 15.75 -76.88 5.62 3.11 49

face

Stat map plot for the contrast: face
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -50.75 -50.62 13.12 5.43 196
1a -47.25 -58.12 13.12 4.43
2 -47.25 -43.12 -35.62 5.08 49
3 -33.25 50.62 16.88 4.92 492
3a -40.25 46.88 13.12 4.22
4 -47.25 -39.38 16.88 4.89 98
5 -12.25 -58.12 -16.88 4.84 147
6 68.25 -9.38 -9.38 4.82 147
7 -36.75 31.88 16.88 4.66 246
8 -1.75 -39.38 5.62 4.64 98
9 -15.75 13.12 73.12 4.60 196
10 33.25 -61.88 -13.12 4.57 196
11 -43.75 -31.88 35.62 4.46 295
11a -47.25 -28.12 28.12 3.74
12 1.75 -43.12 -1.88 4.45 49
13 -47.25 24.38 20.62 4.45 49
14 40.25 -39.38 -24.38 4.30 98
15 -22.75 39.38 13.12 4.27 49
16 22.75 -50.62 -24.38 4.27 49
17 -47.25 -50.62 20.62 4.22 49
18 -47.25 -54.38 -9.38 4.19 98
19 -15.75 -13.12 24.38 4.18 98
20 -29.75 24.38 -13.12 4.15 147
21 -40.25 -43.12 -16.88 4.14 246
21a -43.75 -43.12 -9.38 3.90
22 40.25 -43.12 -9.38 4.13 98
23 -1.75 28.12 61.88 4.07 98
24 -1.75 -58.12 -16.88 4.07 147
25 -57.75 -16.88 1.88 4.06 98
26 29.75 -46.88 35.62 4.02 49
27 5.25 -58.12 -24.38 4.00 442
28 -36.75 -31.88 -46.88 4.00 49
29 -8.75 13.12 65.62 3.99 49
30 33.25 -46.88 -39.38 3.99 98
31 1.75 -43.12 -16.88 3.98 196
32 -36.75 31.88 35.62 3.95 541
33 22.75 -1.88 58.12 3.94 98
34 -19.25 -73.12 39.38 3.93 98
35 1.75 24.38 -13.12 3.92 49
36 -8.75 -39.38 -5.62 3.87 49
37 -47.25 -46.88 9.38 3.86 98
38 5.25 20.62 65.62 3.86 49
39 40.25 43.12 16.88 3.85 49
40 -26.25 -43.12 -43.12 3.83 49
41 19.25 -46.88 -20.62 3.81 246
42 -36.75 -43.12 39.38 3.80 295
43 -8.75 -28.12 61.88 3.79 49
44 -8.75 -46.88 -31.88 3.79 49
45 43.75 35.62 39.38 3.76 344
45a 40.25 28.12 39.38 3.56
46 -22.75 -46.88 -50.62 3.75 49
47 -47.25 -61.88 -5.62 3.74 49
48 -29.75 28.12 13.12 3.73 49
49 29.75 -46.88 -31.88 3.73 49
50 19.25 -16.88 39.38 3.72 49
51 -47.25 -9.38 13.12 3.71 49
52 -47.25 -46.88 -31.88 3.68 49
53 33.25 50.62 20.62 3.67 49
54 -29.75 -13.12 5.62 3.67 49
55 36.75 -46.88 9.38 3.66 49
56 -50.75 20.62 20.62 3.65 49
57 -47.25 -16.88 -35.62 3.61 49
58 36.75 -35.62 -20.62 3.61 49
59 33.25 -50.62 -20.62 3.61 147
60 33.25 -54.38 43.12 3.60 49
61 5.25 -24.38 -20.62 3.59 49
62 -47.25 -46.88 16.88 3.59 49
63 -57.75 -9.38 -1.88 3.58 49
64 -12.25 -76.88 28.12 3.58 49
65 22.75 31.88 28.12 3.57 49
66 -36.75 5.62 43.12 3.57 49
67 -33.25 39.38 54.38 3.56 49
68 -1.75 -46.88 -9.38 3.56 98
69 26.25 -28.12 24.38 3.56 49
70 29.75 -50.62 -39.38 3.56 49
71 -12.25 -39.38 58.12 3.55 49
72 29.75 -54.38 46.88 3.55 49
73 -50.75 -43.12 1.88 3.53 147
74 -36.75 20.62 50.62 3.53 49
75 19.25 -1.88 50.62 3.52 49
76 -57.75 31.88 31.88 3.52 49
77 -43.75 -43.12 46.88 3.51 49
78 -29.75 5.62 58.12 3.51 98
79 26.25 1.88 13.12 3.51 49
80 5.25 -65.62 13.12 3.49 49
81 29.75 -46.88 -43.12 3.47 49
82 33.25 -43.12 -24.38 3.47 49
83 -47.25 -16.88 -43.12 3.46 49
84 -36.75 -46.88 50.62 3.45 49
85 -54.25 -9.38 -31.88 3.44 49
86 -33.25 31.88 46.88 3.43 49
87 -26.25 -84.38 -9.38 3.43 98
88 12.25 28.12 61.88 3.42 98
89 -15.75 16.88 16.88 3.41 49
90 -33.25 16.88 50.62 3.41 49
91 -5.25 61.88 -9.38 3.41 49
92 -47.25 -61.88 -28.12 3.41 49
93 -33.25 -9.38 -28.12 3.41 49
94 -40.25 50.62 9.38 3.41 49
95 -19.25 -61.88 -9.38 3.40 49
96 22.75 -24.38 -58.12 3.39 49
97 -29.75 35.62 -1.88 3.39 49
98 -54.25 -20.62 -39.38 3.39 49
99 40.25 -46.88 -20.62 3.39 49
100 8.75 -58.12 -28.12 3.38 98
101 -47.25 -46.88 -1.88 3.38 49
102 36.75 54.38 24.38 3.38 98
103 -29.75 31.88 -9.38 3.37 49
104 40.25 -35.62 -43.12 3.37 49
105 -50.75 -58.12 -13.12 3.36 49
106 36.75 61.88 28.12 3.35 49
107 -47.25 58.12 -1.88 3.35 49
108 -47.25 24.38 28.12 3.34 98
109 -47.25 -9.38 5.62 3.34 49
110 -50.75 -35.62 43.12 3.34 49
111 -47.25 -46.88 -58.12 3.34 49
112 68.25 -28.12 16.88 3.33 98
113 47.25 35.62 13.12 3.33 49
114 19.25 5.62 13.12 3.32 49
115 29.75 -46.88 -20.62 3.32 49
116 -8.75 -13.12 20.62 3.32 49
117 5.25 31.88 -35.62 3.32 49
118 15.75 -54.38 -20.62 3.32 49
119 43.75 9.38 50.62 3.32 49
120 15.75 5.62 9.38 3.31 49
121 8.75 -1.88 9.38 3.31 49
122 33.25 20.62 43.12 3.31 49
123 43.75 -54.38 9.38 3.30 98
124 -40.25 39.38 43.12 3.30 49
125 -47.25 -58.12 -31.88 3.30 98
126 12.25 -88.12 5.62 3.30 49
127 40.25 -69.38 -16.88 3.30 49
128 -43.75 -31.88 -9.38 3.29 49
129 50.75 1.88 43.12 3.29 49
130 43.75 16.88 31.88 3.29 49
131 -47.25 -50.62 31.88 3.29 49
132 15.75 13.12 43.12 3.29 49
133 1.75 -43.12 5.62 3.28 49
134 -50.75 -28.12 35.62 3.28 49
135 -54.25 -43.12 20.62 3.28 49
136 -26.25 13.12 61.88 3.28 98
137 -29.75 -50.62 1.88 3.27 49
138 29.75 -35.62 35.62 3.27 49
139 43.75 13.12 46.88 3.26 49
140 22.75 -43.12 54.38 3.26 49
141 -40.25 20.62 24.38 3.26 49
142 -33.25 58.12 20.62 3.26 49
143 29.75 9.38 13.12 3.25 49
144 -47.25 -31.88 -50.62 3.23 49
145 1.75 13.12 61.88 3.23 49
146 -12.25 -1.88 28.12 3.23 49
147 26.25 -43.12 35.62 3.23 49
148 -1.75 -31.88 9.38 3.22 49
149 -57.75 9.38 -16.88 3.22 49
150 -47.25 -61.88 20.62 3.22 49
151 12.25 -65.62 54.38 3.22 98
152 26.25 -13.12 31.88 3.22 49
153 26.25 -9.38 35.62 3.22 49
154 -15.75 -46.88 -1.88 3.22 49
155 -19.25 -39.38 1.88 3.22 49
156 -8.75 20.62 58.12 3.21 49
157 -22.75 46.88 13.12 3.21 49
158 15.75 13.12 28.12 3.21 49
159 57.75 -35.62 43.12 3.21 49
160 26.25 -28.12 69.38 3.20 49
161 -29.75 20.62 -46.88 3.20 49
162 1.75 -69.38 46.88 3.20 49
163 -33.25 -61.88 5.62 3.19 49
164 -8.75 -58.12 -43.12 3.19 49
165 -36.75 -39.38 46.88 3.19 49
166 -61.25 -46.88 20.62 3.18 49
167 12.25 1.88 5.62 3.18 49
168 -15.75 54.38 54.38 3.18 49
169 -12.25 5.62 65.62 3.17 49
170 40.25 -43.12 5.62 3.17 49
171 -54.25 -35.62 -50.62 3.17 49
172 5.25 -9.38 69.38 3.17 49
173 -1.75 39.38 -20.62 3.17 49
174 -15.75 84.38 20.62 3.17 49
175 1.75 -58.12 -13.12 3.16 49
176 40.25 -35.62 28.12 3.16 49
177 33.25 31.88 35.62 3.16 49
178 1.75 31.88 -24.38 3.16 49
179 12.25 -54.38 -16.88 3.15 49
180 -47.25 -28.12 5.62 3.15 49
181 -40.25 -65.62 -16.88 3.15 49
182 36.75 -20.62 -9.38 3.15 49
183 -47.25 -50.62 5.62 3.15 49
184 -33.25 -54.38 43.12 3.14 49
185 -8.75 -39.38 -24.38 3.14 49
186 -1.75 -50.62 -39.38 3.14 49
187 -15.75 -73.12 16.88 3.14 49
188 19.25 -46.88 -35.62 3.14 49
189 19.25 -5.62 28.12 3.14 49
190 -47.25 -39.38 31.88 3.13 49
191 -50.75 -39.38 -24.38 3.13 49
192 -26.25 -39.38 39.38 3.13 49
193 -22.75 9.38 54.38 3.13 49
194 -50.75 39.38 9.38 3.13 49
195 -40.25 -16.88 1.88 3.13 49
196 29.75 -1.88 46.88 3.12 49
197 -36.75 -65.62 -31.88 3.11 49
198 -26.25 16.88 -16.88 3.11 49
199 -12.25 -61.88 54.38 3.11 49
200 -5.25 16.88 35.62 3.10 49
201 -40.25 24.38 46.88 3.10 49
202 33.25 -50.62 46.88 3.10 49
203 -29.75 -16.88 16.88 3.10 49
204 47.25 5.62 50.62 3.10 49
205 -33.25 -46.88 61.88 3.09 49

shoe

Stat map plot for the contrast: shoe
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 19.25 73.12 20.62 4.65 49
2 22.75 -9.38 35.62 4.48 98
3 19.25 -20.62 -28.12 4.08 49
4 12.25 5.62 31.88 3.97 49
5 26.25 35.62 28.12 3.97 49
6 61.25 28.12 31.88 3.87 147
7 15.75 16.88 58.12 3.83 49
8 -5.25 -76.88 -28.12 3.74 49
9 36.75 46.88 -16.88 3.71 49
10 -19.25 -28.12 35.62 3.64 49
11 26.25 -46.88 -24.38 3.61 49
12 -12.25 39.38 65.62 3.61 49
13 -29.75 9.38 35.62 3.60 49
14 -8.75 84.38 20.62 3.60 98
15 -54.25 -65.62 16.88 3.59 49
16 -26.25 -13.12 -43.12 3.58 49
17 19.25 -28.12 -54.38 3.57 49
18 -12.25 1.88 -69.38 3.56 49
19 47.25 -28.12 -5.62 3.55 98
20 22.75 -69.38 -28.12 3.53 49
21 33.25 9.38 61.88 3.50 49
22 -8.75 20.62 73.12 3.49 98
23 22.75 61.88 31.88 3.49 147
24 40.25 -54.38 39.38 3.47 49
25 1.75 -24.38 -39.38 3.46 49
26 5.25 -13.12 24.38 3.46 49
27 -68.25 -20.62 24.38 3.45 49
28 -12.25 39.38 24.38 3.42 49
29 50.75 -35.62 -35.62 3.41 49
30 -1.75 -28.12 -73.12 3.39 49
31 29.75 24.38 -28.12 3.38 98
32 22.75 -54.38 -43.12 3.35 49
33 -12.25 -46.88 -43.12 3.28 49
34 -15.75 -24.38 35.62 3.27 49
35 47.25 -31.88 -58.12 3.26 49
36 -8.75 73.12 31.88 3.26 49
37 -8.75 -1.88 -58.12 3.26 49
38 -8.75 -46.88 -39.38 3.26 49
39 12.25 -28.12 28.12 3.25 49
40 -19.25 20.62 43.12 3.24 49
41 -36.75 5.62 31.88 3.24 49
42 -68.25 -9.38 9.38 3.21 49
43 22.75 -65.62 9.38 3.21 49
44 -47.25 -16.88 -24.38 3.21 49
45 33.25 -43.12 -35.62 3.19 49
46 -40.25 -9.38 -50.62 3.19 49
47 -40.25 -16.88 -35.62 3.18 49
48 -54.25 -35.62 -1.88 3.18 98
49 15.75 -24.38 -73.12 3.17 49
50 -33.25 31.88 58.12 3.16 49
51 -68.25 -16.88 28.12 3.16 49
52 43.75 46.88 -9.38 3.16 49
53 68.25 5.62 -13.12 3.15 49
54 5.25 39.38 50.62 3.14 49
55 36.75 -35.62 -46.88 3.14 98
56 -5.25 -54.38 -50.62 3.11 49
57 -19.25 16.88 -20.62 3.10 49

cat

Stat map plot for the contrast: cat
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 12.25 -61.88 -31.88 5.00 590
1a 5.25 -61.88 -24.38 4.34
2 -40.25 -65.62 13.12 4.41 196
3 -29.75 39.38 54.38 4.32 98
4 -12.25 -58.12 -16.88 4.29 49
5 -12.25 -76.88 31.88 4.27 98
6 43.75 -5.62 16.88 4.11 196
7 22.75 -24.38 -58.12 4.05 49
8 19.25 -31.88 -69.38 4.01 98
9 43.75 1.88 9.38 3.94 295
10 5.25 -80.62 9.38 3.90 98
11 61.25 -31.88 20.62 3.86 49
12 -12.25 -20.62 -58.12 3.86 98
13 1.75 35.62 -13.12 3.86 49
14 -29.75 35.62 50.62 3.83 49
15 -36.75 -50.62 -39.38 3.82 98
16 33.25 -1.88 46.88 3.80 49
17 50.75 1.88 -24.38 3.79 49
18 47.25 1.88 -46.88 3.79 49
19 50.75 28.12 24.38 3.78 49
20 -5.25 -50.62 -13.12 3.76 49
21 22.75 -61.88 -54.38 3.76 49
22 -12.25 -73.12 -31.88 3.73 49
23 36.75 28.12 43.12 3.72 98
24 36.75 69.38 5.62 3.71 49
25 -1.75 50.62 -9.38 3.70 98
26 5.25 -31.88 54.38 3.66 49
27 36.75 28.12 -20.62 3.62 49
28 -26.25 -80.62 9.38 3.61 98
29 8.75 -65.62 -24.38 3.60 49
30 -8.75 -46.88 -28.12 3.60 49
31 50.75 9.38 -35.62 3.60 49
32 43.75 5.62 1.88 3.59 49
33 -36.75 46.88 39.38 3.58 49
34 15.75 -80.62 -31.88 3.57 49
35 -54.25 -50.62 5.62 3.56 98
36 36.75 9.38 -35.62 3.55 49
37 29.75 -35.62 -50.62 3.53 49
38 -43.75 -65.62 5.62 3.53 49
39 15.75 -50.62 -39.38 3.50 49
40 61.25 -31.88 43.12 3.50 49
41 12.25 -54.38 -43.12 3.49 49
42 5.25 -61.88 -39.38 3.49 49
43 33.25 -54.38 43.12 3.49 49
44 -64.75 -9.38 -24.38 3.48 49
45 -54.25 -50.62 39.38 3.48 49
46 -40.25 -46.88 50.62 3.48 98
47 8.75 16.88 -16.88 3.48 98
48 -29.75 -46.88 5.62 3.47 49
49 12.25 -39.38 -31.88 3.44 49
50 -40.25 -5.62 50.62 3.44 49
51 64.75 20.62 9.38 3.43 49
52 5.25 -24.38 -73.12 3.42 49
53 12.25 -43.12 1.88 3.42 49
54 -19.25 16.88 69.38 3.42 49
55 -29.75 -54.38 -35.62 3.42 49
56 36.75 28.12 35.62 3.42 49
57 -64.75 -31.88 16.88 3.38 49
58 5.25 43.12 50.62 3.37 49
59 15.75 39.38 -20.62 3.37 49
60 29.75 9.38 -31.88 3.36 49
61 -36.75 -50.62 -20.62 3.35 98
62 -47.25 -43.12 43.12 3.35 98
63 -40.25 -46.88 16.88 3.35 49
64 -43.75 -1.88 -28.12 3.34 49
65 -40.25 -1.88 -31.88 3.34 49
66 12.25 5.62 5.62 3.34 49
67 -64.75 -16.88 24.38 3.33 98
68 -36.75 -76.88 5.62 3.33 98
69 43.75 31.88 39.38 3.33 49
70 -47.25 -50.62 46.88 3.33 98
71 -40.25 -69.38 35.62 3.31 49
72 -29.75 35.62 58.12 3.30 98
73 -22.75 76.88 5.62 3.29 49
74 47.25 13.12 43.12 3.29 98
75 -64.75 -9.38 9.38 3.27 49
76 15.75 -16.88 46.88 3.27 49
77 -8.75 1.88 -28.12 3.27 49
78 -26.25 -46.88 -28.12 3.27 49
79 29.75 -43.12 50.62 3.27 49
80 -57.75 -50.62 13.12 3.26 49
81 -43.75 -43.12 50.62 3.26 49
82 40.25 -5.62 -5.62 3.25 49
83 -33.25 -50.62 58.12 3.24 49
84 12.25 -84.38 -24.38 3.24 49
85 -43.75 13.12 -9.38 3.23 49
86 -50.75 -65.62 -13.12 3.23 49
87 5.25 -54.38 -46.88 3.22 49
88 47.25 9.38 -13.12 3.22 49
89 -43.75 -31.88 35.62 3.21 49
90 -15.75 -84.38 -16.88 3.21 49
91 15.75 -31.88 -61.88 3.21 49
92 -26.25 -54.38 13.12 3.20 49
93 1.75 -50.62 -16.88 3.20 49
94 33.25 -46.88 -24.38 3.20 49
95 50.75 -1.88 -28.12 3.20 49
96 -50.75 -35.62 -46.88 3.19 49
97 1.75 46.88 -9.38 3.18 49
98 -40.25 -43.12 54.38 3.18 49
99 26.25 -65.62 -20.62 3.18 49
100 -47.25 -24.38 54.38 3.17 49
101 -1.75 1.88 -61.88 3.17 49
102 -8.75 -61.88 20.62 3.17 49
103 5.25 20.62 50.62 3.17 49
104 33.25 -54.38 -24.38 3.16 49
105 -8.75 -35.62 -24.38 3.16 49
106 -22.75 35.62 61.88 3.15 49
107 12.25 54.38 58.12 3.14 49
108 47.25 20.62 50.62 3.14 49
109 29.75 1.88 -31.88 3.13 49
110 8.75 -54.38 -39.38 3.12 49
111 40.25 -20.62 -39.38 3.12 49
112 36.75 -9.38 50.62 3.11 49
113 -40.25 43.12 43.12 3.10 49
114 50.75 24.38 39.38 3.10 49
115 36.75 -24.38 -54.38 3.10 49
116 -29.75 -76.88 9.38 3.09 49

scissors

Stat map plot for the contrast: scissors
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -50.75 20.62 -24.38 6.02 1181
2 -12.25 20.62 -46.88 5.79 492
2a -22.75 16.88 -43.12 4.73
3 -19.25 84.38 20.62 5.60 295
4 -26.25 24.38 28.12 5.28 196
5 29.75 5.62 -5.62 5.26 147
6 36.75 20.62 -31.88 5.18 246
7 47.25 24.38 -1.88 5.12 147
8 12.25 13.12 -43.12 5.09 442
9 -22.75 -58.12 -50.62 5.08 442
9a -22.75 -46.88 -50.62 4.60
10 -19.25 61.88 50.62 5.05 49
11 -50.75 -9.38 -20.62 5.01 295
12 50.75 31.88 -31.88 4.97 49
13 -19.25 31.88 -35.62 4.91 196
14 1.75 -1.88 -61.88 4.86 295
15 33.25 5.62 -46.88 4.82 49
16 -12.25 1.88 -28.12 4.76 49
17 12.25 -61.88 -46.88 4.76 49
18 1.75 -28.12 -61.88 4.68 98
19 12.25 -35.62 -69.38 4.66 147
20 22.75 -58.12 -50.62 4.61 98
21 -54.25 -39.38 -31.88 4.60 49
22 1.75 13.12 -16.88 4.54 98
23 47.25 24.38 9.38 4.54 49
24 26.25 -46.88 1.88 4.54 98
25 40.25 5.62 31.88 4.53 98
26 -15.75 -43.12 -46.88 4.53 98
27 40.25 -58.12 -5.62 4.50 147
28 19.25 16.88 -46.88 4.50 49
29 5.25 24.38 -46.88 4.47 442
29a -1.75 28.12 -39.38 3.59
30 -5.25 -16.88 -39.38 4.45 98
31 50.75 24.38 -35.62 4.41 147
32 12.25 80.62 35.62 4.41 196
33 33.25 -35.62 -35.62 4.37 393
33a 33.25 -39.38 -43.12 3.60
34 1.75 1.88 31.88 4.37 246
35 -12.25 76.88 20.62 4.36 98
36 47.25 -5.62 20.62 4.36 344
37 19.25 -46.88 -35.62 4.34 98
38 29.75 -1.88 24.38 4.33 49
39 -12.25 9.38 -58.12 4.29 98
40 54.25 5.62 50.62 4.29 344
40a 54.25 1.88 43.12 4.27
41 15.75 -35.62 -73.12 4.28 49
42 19.25 80.62 1.88 4.28 147
43 15.75 76.88 28.12 4.26 49
44 -29.75 76.88 20.62 4.26 49
45 -54.25 9.38 -16.88 4.26 49
46 -1.75 -31.88 9.38 4.26 246
46a -1.75 -39.38 5.62 4.21
47 -22.75 -5.62 -20.62 4.25 49
48 -40.25 61.88 5.62 4.24 98
49 -47.25 24.38 20.62 4.22 49
50 26.25 13.12 -39.38 4.22 49
51 -8.75 28.12 54.38 4.17 196
52 40.25 -1.88 61.88 4.17 246
52a 40.25 -9.38 58.12 3.83
53 36.75 31.88 -39.38 4.17 295
54 -36.75 -1.88 -20.62 4.17 98
55 -5.25 -9.38 31.88 4.14 49
56 22.75 -54.38 -43.12 4.14 49
57 -29.75 20.62 -46.88 4.13 49
58 22.75 -1.88 9.38 4.11 49
59 -26.25 80.62 16.88 4.11 295
60 29.75 -46.88 -61.88 4.10 49
61 15.75 -28.12 -54.38 4.10 49
62 33.25 24.38 -43.12 4.08 98
63 -40.25 -16.88 -65.62 4.07 49
64 -26.25 76.88 24.38 4.05 196
65 19.25 -5.62 -35.62 4.04 49
66 54.25 1.88 35.62 4.03 246
67 12.25 24.38 -35.62 4.03 98
68 -26.25 -13.12 1.88 4.02 49
69 -5.25 80.62 31.88 4.02 196
70 -19.25 50.62 13.12 4.02 49
71 40.25 -43.12 -5.62 4.01 49
72 43.75 -31.88 -13.12 4.01 98
73 15.75 5.62 9.38 4.01 49
74 -33.25 -65.62 -16.88 4.00 49
75 26.25 -50.62 -54.38 4.00 98
76 33.25 -5.62 -1.88 3.99 98
77 40.25 -39.38 58.12 3.98 49
78 22.75 -43.12 -61.88 3.98 98
79 -19.25 20.62 24.38 3.98 49
80 57.75 -20.62 28.12 3.97 49
81 -5.25 84.38 1.88 3.96 49
82 40.25 -24.38 -35.62 3.96 49
83 -19.25 9.38 -35.62 3.95 49
84 12.25 80.62 -5.62 3.94 49
85 -5.25 -28.12 -76.88 3.94 147
86 50.75 50.62 20.62 3.93 98
87 19.25 -16.88 -54.38 3.93 49
88 33.25 -39.38 24.38 3.93 49
89 40.25 28.12 -43.12 3.92 196
90 -26.25 16.88 28.12 3.92 49
91 1.75 39.38 -16.88 3.92 49
92 -26.25 -24.38 20.62 3.91 49
93 -15.75 -9.38 28.12 3.91 98
94 -8.75 24.38 -35.62 3.90 98
95 50.75 -16.88 46.88 3.89 49
96 -15.75 76.88 31.88 3.89 49
97 1.75 -28.12 -76.88 3.89 49
98 47.25 16.88 -20.62 3.89 49
99 19.25 -28.12 73.12 3.87 49
100 57.75 -13.12 39.38 3.87 49
101 -8.75 84.38 20.62 3.87 98
102 29.75 76.88 13.12 3.87 49
103 40.25 13.12 -39.38 3.87 49
104 33.25 -69.38 -13.12 3.87 147
105 19.25 54.38 50.62 3.85 49
106 -12.25 -50.62 -50.62 3.85 49
107 -19.25 -1.88 -35.62 3.85 49
108 29.75 -50.62 -50.62 3.84 49
109 12.25 -61.88 9.38 3.84 49
110 -29.75 13.12 61.88 3.83 196
111 5.25 -1.88 5.62 3.83 98
112 15.75 -16.88 46.88 3.83 49
113 -1.75 -1.88 -76.88 3.82 196
114 -36.75 65.62 20.62 3.82 98
115 33.25 -39.38 -20.62 3.81 49
116 29.75 65.62 43.12 3.79 49
117 -50.75 -1.88 20.62 3.79 49
118 50.75 -39.38 -16.88 3.79 49
119 -12.25 -43.12 -13.12 3.78 49
120 -22.75 58.12 -20.62 3.77 246
121 5.25 39.38 -20.62 3.77 49
122 -26.25 31.88 -39.38 3.76 49
123 -1.75 -13.12 -54.38 3.76 196
124 -33.25 -58.12 -31.88 3.75 98
125 15.75 88.12 9.38 3.75 98
126 43.75 13.12 -28.12 3.75 98
127 26.25 -16.88 -16.88 3.75 98
128 -19.25 31.88 -28.12 3.74 98
129 5.25 9.38 -58.12 3.73 196
130 -8.75 9.38 65.62 3.73 49
131 -29.75 -69.38 9.38 3.73 98
132 -64.75 -5.62 5.62 3.71 98
133 12.25 -31.88 -46.88 3.71 49
134 15.75 50.62 -9.38 3.71 49
135 -40.25 -9.38 -5.62 3.70 49
136 33.25 -20.62 43.12 3.70 49
137 -12.25 -50.62 -13.12 3.69 49
138 26.25 -13.12 13.12 3.69 49
139 -5.25 80.62 13.12 3.68 49
140 -26.25 16.88 -16.88 3.67 49
141 19.25 -1.88 -1.88 3.66 49
142 19.25 16.88 -35.62 3.66 49
143 -1.75 73.12 35.62 3.66 49
144 29.75 -54.38 -61.88 3.65 49
145 1.75 -9.38 1.88 3.65 49
146 15.75 73.12 20.62 3.65 98
147 33.25 -50.62 -20.62 3.65 49
148 12.25 -35.62 -24.38 3.65 49
149 15.75 24.38 69.38 3.64 49
150 -47.25 -5.62 -28.12 3.64 49
151 -1.75 1.88 13.12 3.64 49
152 -40.25 69.38 13.12 3.63 49
153 12.25 -28.12 -31.88 3.62 49
154 8.75 1.88 24.38 3.62 49
155 29.75 -9.38 9.38 3.62 49
156 -15.75 -65.62 5.62 3.61 49
157 -26.25 -80.62 -5.62 3.61 49
158 33.25 5.62 16.88 3.60 147
159 33.25 -5.62 24.38 3.60 98
160 57.75 -1.88 5.62 3.60 49
161 15.75 -50.62 -35.62 3.60 49
162 33.25 24.38 61.88 3.60 49
163 -1.75 -35.62 -65.62 3.58 49
164 22.75 -20.62 20.62 3.58 49
165 -8.75 24.38 43.12 3.58 49
166 40.25 -13.12 46.88 3.58 49
167 -5.25 -20.62 54.38 3.58 98
168 -1.75 -13.12 31.88 3.57 49
169 -47.25 20.62 43.12 3.57 147
170 -33.25 69.38 20.62 3.56 98
171 57.75 -24.38 5.62 3.56 49
172 5.25 -65.62 20.62 3.56 49
173 26.25 -16.88 -35.62 3.55 98
174 -1.75 -46.88 -1.88 3.55 98
175 -50.75 13.12 20.62 3.55 49
176 40.25 69.38 16.88 3.55 98
177 1.75 16.88 -20.62 3.55 49
178 -29.75 20.62 20.62 3.54 49
179 -29.75 31.88 -9.38 3.54 49
180 40.25 -16.88 9.38 3.54 49
181 -12.25 88.12 9.38 3.54 49
182 -5.25 5.62 39.38 3.54 49
183 -1.75 -13.12 -5.62 3.54 98
184 -8.75 80.62 5.62 3.54 98
185 -50.75 -13.12 5.62 3.54 49
186 57.75 16.88 16.88 3.53 49
187 1.75 13.12 31.88 3.53 147
188 -33.25 39.38 54.38 3.53 49
189 -5.25 28.12 61.88 3.52 49
190 -43.75 -24.38 35.62 3.52 98
191 1.75 65.62 46.88 3.52 49
192 -5.25 5.62 -69.38 3.52 49
193 -22.75 -39.38 -54.38 3.51 49
194 33.25 -28.12 -39.38 3.51 98
195 -1.75 -5.62 -80.62 3.51 98
196 26.25 28.12 -43.12 3.51 49
197 33.25 31.88 -20.62 3.50 49
198 -33.25 73.12 9.38 3.50 49
199 -1.75 20.62 54.38 3.50 49
200 12.25 -1.88 43.12 3.50 49
201 57.75 -28.12 9.38 3.50 49
202 -12.25 1.88 9.38 3.49 49
203 -40.25 43.12 -31.88 3.49 49
204 43.75 -9.38 -16.88 3.49 49
205 47.25 -9.38 54.38 3.49 49
206 -57.75 -5.62 -1.88 3.48 147
207 15.75 88.12 16.88 3.47 49
208 54.25 9.38 28.12 3.47 98
209 -5.25 39.38 58.12 3.46 49
210 50.75 16.88 -5.62 3.46 49
211 15.75 46.88 -20.62 3.46 49
212 50.75 54.38 -5.62 3.46 49
213 33.25 -13.12 50.62 3.45 49
214 57.75 -24.38 -13.12 3.45 98
215 -22.75 -9.38 39.38 3.45 49
216 -19.25 -5.62 16.88 3.45 49
217 19.25 -5.62 61.88 3.45 49
218 -43.75 16.88 39.38 3.45 49
219 -1.75 -73.12 -31.88 3.44 49
220 -15.75 1.88 28.12 3.43 49
221 -54.25 20.62 -16.88 3.43 49
222 40.25 16.88 61.88 3.43 49
223 8.75 -1.88 28.12 3.43 49
224 47.25 -9.38 28.12 3.42 49
225 33.25 -13.12 -61.88 3.42 49
226 -8.75 20.62 58.12 3.42 49
227 -36.75 69.38 16.88 3.42 49
228 -22.75 -88.12 -1.88 3.42 49
229 33.25 -1.88 -24.38 3.41 49
230 26.25 -61.88 -16.88 3.41 49
231 -12.25 46.88 -16.88 3.41 49
232 -47.25 -16.88 -39.38 3.40 49
233 33.25 24.38 31.88 3.40 49
234 43.75 -61.88 5.62 3.40 98
235 -40.25 -16.88 -20.62 3.40 49
236 50.75 -16.88 58.12 3.40 49
237 22.75 -20.62 -5.62 3.40 49
238 1.75 76.88 16.88 3.40 49
239 33.25 -20.62 -58.12 3.40 49
240 22.75 -35.62 -9.38 3.39 49
241 36.75 1.88 65.62 3.39 49
242 -22.75 -31.88 -43.12 3.39 98
243 -15.75 -46.88 -43.12 3.39 98
244 36.75 39.38 16.88 3.38 49
245 47.25 -16.88 31.88 3.38 49
246 12.25 -24.38 -50.62 3.38 49
247 8.75 76.88 16.88 3.37 49
248 29.75 -58.12 -46.88 3.37 49
249 -47.25 20.62 -16.88 3.37 49
250 22.75 -43.12 54.38 3.37 49
251 -5.25 -1.88 -28.12 3.37 147
252 -8.75 -5.62 -58.12 3.36 49
253 57.75 -9.38 43.12 3.35 49
254 -22.75 39.38 31.88 3.35 49
255 -8.75 5.62 73.12 3.35 98
256 1.75 -39.38 -20.62 3.34 49
257 54.25 -16.88 -13.12 3.34 98
258 -36.75 24.38 -39.38 3.34 49
259 -43.75 24.38 -1.88 3.34 49
260 47.25 -5.62 50.62 3.34 49
261 57.75 -31.88 46.88 3.33 49
262 50.75 -54.38 9.38 3.33 49
263 -33.25 28.12 -39.38 3.33 49
264 5.25 35.62 -9.38 3.32 49
265 5.25 -50.62 -5.62 3.31 49
266 -57.75 -9.38 -13.12 3.31 49
267 40.25 -43.12 54.38 3.31 98
268 -40.25 -31.88 39.38 3.30 49
269 22.75 -13.12 -20.62 3.30 49
270 33.25 39.38 -16.88 3.30 49
271 8.75 46.88 -20.62 3.30 49
272 -50.75 20.62 20.62 3.30 49
273 -43.75 16.88 58.12 3.30 49
274 -19.25 -13.12 -46.88 3.30 49
275 43.75 -50.62 -5.62 3.29 49
276 12.25 1.88 -69.38 3.29 49
277 1.75 -35.62 -13.12 3.29 49
278 -33.25 9.38 35.62 3.29 49
279 -47.25 -24.38 -1.88 3.29 49
280 29.75 58.12 -16.88 3.29 49
281 -8.75 -46.88 -9.38 3.29 49
282 1.75 -1.88 -54.38 3.28 49
283 29.75 31.88 39.38 3.28 49
284 36.75 -50.62 -5.62 3.28 49
285 33.25 -16.88 65.62 3.28 147
286 -43.75 -31.88 54.38 3.28 49
287 22.75 43.12 -9.38 3.28 49
288 8.75 -58.12 -16.88 3.27 49
289 -12.25 -1.88 -58.12 3.27 49
290 -1.75 -58.12 -43.12 3.27 49
291 15.75 -76.88 -16.88 3.27 49
292 15.75 -20.62 -20.62 3.27 49
293 -50.75 24.38 46.88 3.27 49
294 33.25 -5.62 50.62 3.27 49
295 29.75 5.62 13.12 3.27 49
296 15.75 -39.38 24.38 3.27 49
297 8.75 -9.38 -76.88 3.26 49
298 -26.25 65.62 35.62 3.26 49
299 -8.75 16.88 -43.12 3.26 49
300 15.75 -50.62 46.88 3.26 49
301 22.75 -28.12 69.38 3.26 49
302 -5.25 84.38 9.38 3.25 49
303 -19.25 73.12 31.88 3.25 49
304 15.75 16.88 28.12 3.25 49
305 15.75 13.12 9.38 3.25 49
306 1.75 -43.12 5.62 3.25 49
307 43.75 54.38 35.62 3.24 49
308 8.75 -43.12 -73.12 3.24 49
309 -26.25 -28.12 31.88 3.23 49
310 -26.25 -1.88 -9.38 3.23 49
311 -43.75 16.88 -1.88 3.22 49
312 -33.25 -24.38 -43.12 3.22 49
313 19.25 46.88 39.38 3.22 98
314 -12.25 -5.62 28.12 3.22 98
315 29.75 -35.62 -20.62 3.22 49
316 1.75 35.62 -24.38 3.22 49
317 -12.25 65.62 -9.38 3.21 49
318 47.25 9.38 -1.88 3.21 49
319 5.25 -5.62 -1.88 3.21 49
320 26.25 -50.62 -16.88 3.21 49
321 22.75 -39.38 13.12 3.21 49
322 -1.75 -54.38 -61.88 3.21 49
323 47.25 -28.12 -20.62 3.21 98
324 40.25 -28.12 13.12 3.20 49
325 22.75 -54.38 -61.88 3.20 49
326 19.25 28.12 -43.12 3.20 49
327 33.25 20.62 -13.12 3.20 49
328 43.75 -43.12 9.38 3.20 49
329 -40.25 -73.12 -31.88 3.19 49
330 22.75 84.38 1.88 3.19 49
331 -19.25 28.12 39.38 3.19 49
332 -29.75 -16.88 -1.88 3.19 49
333 29.75 -9.38 -28.12 3.19 49
334 12.25 -9.38 43.12 3.19 49
335 19.25 -20.62 -28.12 3.19 49
336 -26.25 -39.38 -43.12 3.19 49
337 -8.75 20.62 31.88 3.19 49
338 33.25 -20.62 -20.62 3.19 49
339 -33.25 -84.38 -1.88 3.19 49
340 -26.25 43.12 -28.12 3.19 49
341 -57.75 -5.62 -16.88 3.18 49
342 -15.75 -9.38 35.62 3.18 98
343 19.25 -50.62 -13.12 3.18 49
344 -1.75 -1.88 -20.62 3.18 49
345 29.75 -1.88 13.12 3.18 49
346 33.25 31.88 -9.38 3.17 49
347 15.75 -20.62 65.62 3.17 49
348 -5.25 -9.38 69.38 3.17 49
349 -54.25 -9.38 -31.88 3.17 49
350 -26.25 61.88 -5.62 3.16 49
351 -19.25 -39.38 24.38 3.16 49
352 1.75 -5.62 -20.62 3.16 49
353 -33.25 31.88 13.12 3.16 49
354 15.75 -5.62 -1.88 3.15 49
355 -29.75 -13.12 -35.62 3.15 49
356 43.75 -46.88 -13.12 3.15 49
357 -12.25 -1.88 -20.62 3.15 49
358 -22.75 -9.38 -9.38 3.15 49
359 -26.25 9.38 20.62 3.15 49
360 47.25 24.38 -13.12 3.15 49
361 26.25 24.38 35.62 3.14 49
362 -22.75 -46.88 -31.88 3.14 49
363 -19.25 -1.88 -20.62 3.14 49
364 -19.25 -9.38 5.62 3.14 49
365 -19.25 9.38 9.38 3.14 49
366 -29.75 35.62 54.38 3.14 49
367 50.75 35.62 13.12 3.14 49
368 29.75 -43.12 50.62 3.13 49
369 26.25 1.88 24.38 3.13 49
370 -26.25 -50.62 -39.38 3.13 49
371 -19.25 -20.62 5.62 3.12 49
372 -40.25 39.38 43.12 3.12 49
373 36.75 73.12 13.12 3.12 49
374 -15.75 13.12 73.12 3.12 49
375 29.75 -24.38 69.38 3.12 49
376 -5.25 -39.38 -9.38 3.11 49
377 12.25 -20.62 20.62 3.11 49
378 8.75 -31.88 20.62 3.11 49
379 -50.75 16.88 35.62 3.11 49
380 -43.75 13.12 35.62 3.11 49
381 8.75 31.88 61.88 3.11 49
382 5.25 -24.38 69.38 3.11 49
383 47.25 9.38 -16.88 3.11 49
384 -54.25 -1.88 13.12 3.11 49
385 29.75 -1.88 1.88 3.11 49
386 -1.75 28.12 -5.62 3.11 98
387 19.25 -76.88 -9.38 3.10 49
388 15.75 -69.38 54.38 3.10 49
389 19.25 5.62 5.62 3.10 49
390 43.75 24.38 -9.38 3.10 49
391 -19.25 -31.88 46.88 3.10 49
392 -5.25 -46.88 -35.62 3.10 49
393 57.75 -13.12 20.62 3.09 49
394 54.25 1.88 -35.62 3.09 49
395 1.75 80.62 13.12 3.09 49
396 -15.75 13.12 -35.62 3.09 49
397 15.75 -46.88 31.88 3.09 49

About

  • Date preprocessed:


Build the decoding pipeline

To define the decoding pipeline we use Decoder object, we choose :

  • a prediction model, here a Support Vector Classifier, with a linear kernel

  • the mask to use, here a ventral temporal ROI in the visual cortex

  • although it usually helps to decode better, z-maps time series don’t need to be rescaled to a 0 mean, variance of 1 so we use standardize=False.

  • we use univariate feature selection to reduce the dimension of the problem keeping only 5% of voxels which are most informative.

  • a cross-validation scheme, here we use LeaveOneGroupOut cross-validation on the runs which corresponds to a leave-one-run-out

We fit directly this pipeline on the Niimgs outputs of the GLM, with corresponding conditions labels and run labels (for the cross validation).

from sklearn.model_selection import LeaveOneGroupOut

from nilearn.decoding import Decoder

decoder = Decoder(
    estimator="svc",
    mask=haxby_dataset.mask,
    standardize=False,
    screening_percentile=5,
    cv=LeaveOneGroupOut(),
    verbose=1,
)
decoder.fit(z_maps, conditions_label, groups=run_label)

# Return the corresponding mean prediction accuracy compared to chance
# for classifying one-vs-all items.

classification_accuracy = np.mean(list(decoder.cv_scores_.values()))
chance_level = 1.0 / len(np.unique(conditions))
print(
    f"Classification accuracy: {classification_accuracy:.4f} / "
    f"Chance level: {chance_level}"
)
[Decoder.fit] Loading data from [<nibabel.nifti1.Nifti1Image object at
0x7fac36d1f790>, <nibabel.nifti1.Nifti1Image object at 0x7fac365c2470>,
<nibabel.nifti1.Nifti1Image object at 0x7fac365c3160>,
<nibabel.nifti1.Nifti1Image object at 0x7fac365c1d80>,
<nibabel.nifti1.Nifti1Image object at 0x7fac365c1000>,
<nibabel.nifti1.Nifti1Image object at 0x7fac365c13c0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac365c3f70>,
<nibabel.nifti1.Nifti1Image object at 0x7fac365c29b0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac577cb6d0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab32e0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab2350>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab3c10>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab03a0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab0610>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab02b0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab3160>,
<nibabel.nifti1.Nifti1Image object at 0x7fac57779ae0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac57779f90>,
<nibabel.nifti1.Nifti1Image object at 0x7fac57779b70>,
<nibabel.nifti1.Nifti1Image object at 0x7fac57779c90>,
<nibabel.nifti1.Nifti1Image object at 0x7fac57779c00>,
<nibabel.nifti1.Nifti1Image object at 0x7fac57779ba0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac57779a50>,
<nibabel.nifti1.Nifti1Image object at 0x7fac57779e40>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab34c0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab1f90>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab0970>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab0790>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab0850>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab29b0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab0700>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab3a00>,
<nibabel.nifti1.Nifti1Image object at 0x7fac36677550>,
<nibabel.nifti1.Nifti1Image object at 0x7fac36675b40>,
<nibabel.nifti1.Nifti1Image object at 0x7fac366764d0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac36677610>,
<nibabel.nifti1.Nifti1Image object at 0x7fac36675420>,
<nibabel.nifti1.Nifti1Image object at 0x7fac366765f0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac366763e0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac36677310>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab2260>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab2f80>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab3f70>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab1330>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab3ca0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab16c0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab1ed0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab3ac0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac36676800>,
<nibabel.nifti1.Nifti1Image object at 0x7fac366763b0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac365c2230>,
<nibabel.nifti1.Nifti1Image object at 0x7fac365c2950>,
<nibabel.nifti1.Nifti1Image object at 0x7fac365c3640>,
<nibabel.nifti1.Nifti1Image object at 0x7fac365c1900>,
<nibabel.nifti1.Nifti1Image object at 0x7fac365c1180>,
<nibabel.nifti1.Nifti1Image object at 0x7fac365c3b20>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab0580>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab0730>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab1420>,
<nibabel.nifti1.Nifti1Image object at 0x7fac57779c30>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aa663e0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aa66950>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aa66b00>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aa66ad0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac368a7430>,
<nibabel.nifti1.Nifti1Image object at 0x7fac369d3b80>,
<nibabel.nifti1.Nifti1Image object at 0x7fac593c9030>,
<nibabel.nifti1.Nifti1Image object at 0x7fac593cabf0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac593c93f0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac593c80d0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac593ca740>,
<nibabel.nifti1.Nifti1Image object at 0x7fac593ca8f0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab3d90>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab2770>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab0220>,
<nibabel.nifti1.Nifti1Image object at 0x7fac36d1fee0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aa67b20>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aa65480>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aa650c0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aa67df0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aa660b0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aa66fb0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aa64130>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aa66dd0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aa65570>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aa67be0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aa66b90>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aa67f10>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab2d10>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab1ab0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac5aab3b20>,
<nibabel.nifti1.Nifti1Image object at 0x7fac36d1f9d0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac36bc6740>,
<nibabel.nifti1.Nifti1Image object at 0x7fac36bc5450>,
<nibabel.nifti1.Nifti1Image object at 0x7fac36bc43a0>,
<nibabel.nifti1.Nifti1Image object at 0x7fac36bc5360>]
[Decoder.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
/home/runner/work/nilearn/nilearn/examples/02_decoding/plot_haxby_glm_decoding.py:174: UserWarning: [NiftiMasker.fit] Generation of a mask has been requested (imgs != None) while a mask was given at masker creation. Given mask will be used.
  decoder.fit(z_maps, conditions_label, groups=run_label)
[Decoder.fit] Resampling mask
[Decoder.fit] Finished fit
[Decoder.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7fac58d408b0>
[Decoder.fit] Extracting region signals
[Decoder.fit] Cleaning extracted signals
[Decoder.fit] Mask volume = 1.96442e+06mm^3 = 1964.42cm^3
[Decoder.fit] Standard brain volume = 1.88299e+06mm^3
[Decoder.fit] Original screening-percentile: 5
[Decoder.fit] Corrected screening-percentile: 4.79274
[Parallel(n_jobs=1)]: Done  40 tasks      | elapsed:    2.3s
[Parallel(n_jobs=1)]: Done  96 out of  96 | elapsed:    5.5s finished
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
Classification accuracy: 0.7589 / Chance level: 0.125

Total running time of the script: (2 minutes 6.150 seconds)

Estimated memory usage: 1008 MB

Gallery generated by Sphinx-Gallery