Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.datasets.fetch_atlas_schaefer_2018¶
- nilearn.datasets.fetch_atlas_schaefer_2018(n_rois=400, yeo_networks=7, resolution_mm=1, data_dir=None, base_url=None, resume=True, verbose=1)[source]¶
Download and return file names for the Schaefer 2018 parcellation.
Added in Nilearn 0.5.1.
This function returns a Deterministic atlas, and the provided images are in MNI152 space.
For more information on this dataset, see Schaefer 2018 parcellation[1], Schaefer et al.[2], and Thomas Yeo et al.[3].
- Parameters:
- n_rois{100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}, default=400
Number of regions of interest.
- yeo_networks{7, 17}, default=7
ROI annotation according to yeo networks.
- resolution_mm{1, 2}, default=1mm
Spatial resolution of atlas image in mm.
- data_dir
pathlib.Pathorstror None, optional Path where data should be downloaded. By default, files are downloaded in a
nilearn_datafolder in the home directory of the user. See alsonilearn.datasets.utils.get_data_dirs.- base_url
str, default=None Base URL of files to download (
Noneresults in defaultbase_url).- resume
bool, default=True Whether to resume download of a partly-downloaded file.
- verbose
boolorint, default=1 Verbosity level (
0orFalsemeans no message).
- Returns:
- data
sklearn.utils.Bunch Dictionary-like object, contains:
- ‘maps’:
str, path to nifti file containing the 3D
Nifti1Image(its shape is(182, 218, 182)). The values are consecutive integers between 0 andn_roiswhich can be interpreted as indices in the list of labels.
- ‘maps’:
- ‘description’
str Description of the dataset.
- ‘description’
- lut
pandas.DataFrame Act as a look up table (lut) with at least columns ‘index’ and ‘name’. Formatted according to ‘dseg.tsv’ format from BIDS.
- lut
- ‘template’
str The standardized space of analysis in which the atlas results are provided. When known it should be a valid template name taken from the spaces described in the BIDS specification.
- ‘template’
- ‘atlas_type’
str Type of atlas. See Probabilistic atlas and Deterministic atlas.
- ‘atlas_type’
- data
Notes
If the dataset files are already present in the user’s Nilearn data directory, this fetcher will not re-download them. To force a fresh download, you can remove the existing dataset folder from your local Nilearn data directory.
For more details on how Nilearn stores datasets.
Release v0.14.3 of the Schaefer 2018 parcellation is used by default. Versions prior to v0.14.3 are known to contain erroneous region label names. For more details, see https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/Updates/Update_20190916_README.md
License: MIT.
References