Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.regions.ReNA¶
- class nilearn.regions.ReNA(mask_img=None, n_clusters=2, scaling=False, n_iter=10, threshold=1e-07, memory=None, memory_level=1, verbose=0)[source]¶
Recursive Neighbor Agglomeration (ReNA).
Recursively merges the pair of clusters according to 1-nearest neighbors criterion. See Hoyos-Idrobo et al.[1].
- Parameters:
- mask_imgNiimg-like object or
SurfaceImageorSurfaceMaskerobject or None, default=None Object used for masking the data. If None is passed a dummy nifti image will be created to match the array passed at fit time.
- n_clusters
int, default=2 The number of clusters to find.
- scaling
bool, default=False If scaling is True, each cluster is scaled by the square root of its size, preserving the l2-norm of the image.
- n_iter
int, default=10 Number of iterations of the recursive neighbor agglomeration.
- threshold
floatin the open interval (0., 1.), default=1e-7 Threshold used to handle eccentricities.
- memoryNone, instance of
joblib.Memory,str, orpathlib.Path Used to cache the masking process. By default, no caching is done. If a
stris given, it is the path to the caching directory.- memory_level
int, default=1 Rough estimator of the amount of memory used by caching. Higher value means more memory for caching. Zero means no caching.
- verbose
int, default=0 Verbosity level (0 means no message).
- mask_imgNiimg-like object or
- Attributes:
- labels_
numpy.ndarray, shape = [n_features] Cluster labels for each feature.
- n_clusters_
int Number of clusters.
- sizes_
numpy.ndarray, shape = [n_features] It contains the size of each cluster.
- labels_
References
- __init__(mask_img=None, n_clusters=2, scaling=False, n_iter=10, threshold=1e-07, memory=None, memory_level=1, verbose=0)[source]¶
- fit(X, y=None)[source]¶
Compute clustering of the data.
- Parameters:
- X
numpy.ndarray, shape = [n_samples, n_features] Training data.
- yNone
This parameter is unused. It is solely included for scikit-learn compatibility.
- X
- Returns:
- selfReNA object
- fit_predict(X, y=None, **kwargs)¶
Perform clustering on X and returns cluster labels.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input data.
- yIgnored
Not used, present for API consistency by convention.
- **kwargsdict
Arguments to be passed to
fit.Added in version 1.4.
- Returns:
- labelsndarray of shape (n_samples,), dtype=np.int64
Cluster labels.
- fit_transform(X, y=None, **fit_params)¶
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_paramsdict
Additional fit parameters.
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
- get_metadata_routing()¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- inverse_transform(X_red)[source]¶
Send the reduced 2D data matrix back to the original feature space (voxels).
- Parameters:
- X_red
numpy.ndarray, shape = [n_samples, n_clusters] Data reduced with agglomerated signal for each cluster.
- X_red
- Returns:
- X_inv
numpy.ndarray, shape = [n_samples, n_features] Data reduced expanded to the original feature space.
- X_inv
- set_inverse_transform_request(*, X_red='$UNCHANGED$')¶
Configure whether metadata should be requested to be passed to the
inverse_transformmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toinverse_transformif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toinverse_transform.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
- X_redstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
X_redparameter ininverse_transform.
- Returns:
- selfobject
The updated object.
- set_output(*, transform=None)[source]¶
Set the output container when
"transform"is called.Warning
This has not been implemented yet.
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- transform(X, y=None)[source]¶
Apply clustering, reduce the dimensionality of the data.
- Parameters:
- X
numpy.ndarray, shape = [n_samples, n_features] Data to transform with the fitted clustering.
- yNone
This parameter is unused. It is solely included for scikit-learn compatibility.
- X
- Returns:
- X_red
numpy.ndarray, shape = [n_samples, n_clusters] Data reduced with agglomerated signal for each cluster.
- X_red