Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.plotting.plot_img_comparison¶
- nilearn.plotting.plot_img_comparison(ref_imgs, src_imgs, masker, plot_hist=True, log=True, ref_label='image set 1', src_label='image set 2', output_dir=None, axes=None)[source]¶
Create plots to compare two lists of images and measure correlation.
The first plot displays linear correlation between voxel values. The second plot superimposes histograms to compare values distribution.
- Parameters:
- ref_imgsnifti_like
Reference images.
- src_imgsnifti_like
Source images.
- maskerNiftiMasker object
Mask to be used on data.
- plot_hist
bool
, default=True If True then histograms of each img in ref_imgs will be plotted along-side the histogram of the corresponding image in src_imgs.
- log
bool
, default=True Passed to plt.hist.
- ref_label
str
, default=’image set 1’ Name of reference images.
- src_label
str
, default=’image set 2’ Name of source images.
- output_dir
str
or None, default=None Directory where plotted figures will be stored.
- axes
list
of two matplotlib Axes objects, or None, default=None Can receive a list of the form [ax1, ax2] to render the plots. By default new axes will be created.
- Returns:
- corrs
numpy.ndarray
Pearson correlation between the images.
- corrs
Examples using nilearn.plotting.plot_img_comparison
¶
First level analysis of a complete BIDS dataset from openneuro