Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.glm.cluster_level_inference¶
- nilearn.glm.cluster_level_inference(stat_img, mask_img=None, threshold=3.0, alpha=0.05, verbose=0)[source]¶
Report the proportion of active voxels for all clusters defined by the input threshold.
This implements the method described in Rosenblatt et al.[1].
- Parameters:
- stat_img3D Niimg-like object or
SurfaceImagewith a single sample. statistical image (presumably in z scale)
- mask_imgNiimg-like object, or
SurfaceImageor None, default=None mask image
- thresholdNon-negative
float,int, orlistof non-negativefloatorint, default=3.0 Cluster-forming threshold in z-scale.
- alpha
floatorlist, default=0.05 Level of control on the true positive rate, aka true discovery proportion.
- verbose
boolorint, default=0 Verbosity level (
0orFalsemeans no message).
- stat_img3D Niimg-like object or
- Returns:
- proportion_true_discoveries_imgNifti1Image or
SurfaceImage The statistical map that gives the true positive.
- proportion_true_discoveries_imgNifti1Image or
References
Examples using nilearn.glm.cluster_level_inference¶
Second-level fMRI model: true positive proportion in clusters
Second-level fMRI model: true positive proportion in clusters