nilearn.glm: Generalized Linear Models¶
Analyzing fMRI data using GLMs.
Classes¶
| 
 | The contrast class handles the estimation of statistical contrasts on a given model: student (t) or Fisher (F). | 
| 
 | Results from an F contrast of coefficients in a parametric model. | 
| 
 | Results from a t contrast of coefficients in a parametric model. | 
| 
 | A regression model with an AR(p) covariance structure. | 
| 
 | A simple ordinary least squares model. | 
| 
 | Class to contain results from likelihood models. | 
| 
 | Summarize the fit of a linear regression model. | 
| 
 | Contain only information of the model fit necessary for contrast computation. | 
        classDiagram
  LikelihoodModelResults <|-- RegressionResults
  LikelihoodModelResults <|-- SimpleRegressionResults
  OLSModel <|-- ARModel
    Functions¶
| 
 | Compute the specified contrast given an estimated glm. | 
| 
 | Compute the fixed effects, given images of effects and variance. | 
| 
 | Convert a string describing a contrast to a contrast vector. | 
| 
 | Return the Benjamini-Hochberg FDR threshold for the input z_vals. | 
| 
 | Report the proportion of active voxels for all clusters defined by the input threshold. | 
| 
 | Compute the required threshold level and return the thresholded map. | 
| 
 | 
nilearn.glm.first_level¶
Classes¶
| 
 | Implement the General Linear Model for single run fMRI data. | 
Functions¶
| 
 | Check that the provided DataFrame is indeed a valid design matrix descriptor, and returns a triplet of fields. | 
| 
 | Convolve regressors with HRF model. | 
| 
 | Create FirstLevelModel objects and fit arguments from a BIDS dataset. | 
| 
 | Implement the Glover dispersion derivative HRF model. | 
| 
 | Implement the Glover HRF model. | 
| 
 | Implement the Glover time derivative HRF (dhrf) model. | 
| 
 | Generate a design matrix from the input parameters. | 
| 
 | Scaling of the data to have percent of baseline change along the specified axis. | 
| 
 | |
| 
 | |
| 
 | |
| 
 | 
nilearn.glm.second_level¶
Classes¶
| 
 | Implement the General Linear Model for multiple subject fMRI data. | 
Functions¶
| 
 | Set up a second level design. | 
| 
 | Generate p-values corresponding to the contrasts provided based on permutation testing. | 
        classDiagram
  BaseEstimator <|-- BaseGLM
  BaseGLM <|-- FirstLevelModel
  BaseGLM <|-- SecondLevelModel
  CacheMixin <|-- BaseGLM
  ReprHTMLMixin <|-- BaseEstimator
  _HTMLDocumentationLinkMixin <|-- BaseEstimator
  _MetadataRequester <|-- BaseEstimator