Note
Go to the end to download the full example code. or to run this example in your browser via Binder
Massively univariate analysis of a motor task from the Localizer dataset¶
This example shows the results obtained in a massively univariate analysis performed at the inter-subject level with various methods. We use the [left button press (auditory cue)] task from the Localizer dataset and seek association between the contrast values and a variate that measures the speed of pseudo-word reading. No confounding variate is included in the model.
A standard ANOVA is performed. Data smoothed at 5 voxels FWHM are used.
A permuted Ordinary Least Squares algorithm is run at each voxel. Data smoothed at 5 voxels FWHM are used.
Note
If you are using Nilearn with a version older than 0.9.0
,
then you should either upgrade your version or import maskers
from the input_data
module instead of the maskers
module.
That is, you should manually replace in the following example all occurrences of:
from nilearn.maskers import NiftiMasker
with:
from nilearn.input_data import NiftiMasker
from nilearn._utils.helpers import check_matplotlib
check_matplotlib()
import numpy as np
from nilearn import datasets
from nilearn.maskers import NiftiMasker
from nilearn.mass_univariate import permuted_ols
Load Localizer contrast
n_samples = 94
localizer_dataset = datasets.fetch_localizer_contrasts(
["left button press (auditory cue)"],
n_subjects=n_samples,
legacy_format=False,
)
# print basic information on the dataset
print(
"First contrast nifti image (3D) is located "
f"at: {localizer_dataset.cmaps[0]}"
)
tested_var = localizer_dataset.ext_vars["pseudo"]
# Quality check / Remove subjects with bad tested variate
mask_quality_check = np.where(np.logical_not(np.isnan(tested_var)))[0]
n_samples = mask_quality_check.size
contrast_map_filenames = [
localizer_dataset.cmaps[i] for i in mask_quality_check
]
tested_var = tested_var[mask_quality_check].to_numpy().reshape((-1, 1))
print(f"Actual number of subjects after quality check: {int(n_samples)}")
[get_dataset_dir] Dataset found in
/home/runner/nilearn_data/brainomics_localizer
First contrast nifti image (3D) is located at: /home/runner/nilearn_data/brainomics_localizer/brainomics_data/S01/cmaps_LeftAuditoryClick.nii.gz
Actual number of subjects after quality check: 89
Mask data
nifti_masker = NiftiMasker(
smoothing_fwhm=5, memory="nilearn_cache", memory_level=1
)
fmri_masked = nifti_masker.fit_transform(contrast_map_filenames)
Anova (parametric F-scores)
from sklearn.feature_selection import f_regression
_, pvals_anova = f_regression(fmri_masked, tested_var, center=True)
pvals_anova *= fmri_masked.shape[1]
pvals_anova[np.isnan(pvals_anova)] = 1
pvals_anova[pvals_anova > 1] = 1
neg_log_pvals_anova = -np.log10(pvals_anova)
neg_log_pvals_anova_unmasked = nifti_masker.inverse_transform(
neg_log_pvals_anova
)
/home/runner/work/nilearn/nilearn/.tox/doc/lib/python3.9/site-packages/sklearn/utils/validation.py:1229: DataConversionWarning:
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
Perform massively univariate analysis with permuted OLS
This method will produce both voxel-level FWE-corrected -log10 p-values and TFCE-based FWE-corrected -log10 p-values.
Note
permuted_ols
can support a wide range
of analysis designs, depending on the tested_var
.
For example, if you wished to perform a one-sample test, you could
simply provide an array of ones (e.g., np.ones(n_samples)
).
ols_outputs = permuted_ols(
tested_var, # this is equivalent to the design matrix, in array form
fmri_masked,
model_intercept=True,
masker=nifti_masker,
tfce=True,
n_perm=200, # 200 for the sake of time. Ideally, this should be 10000.
verbose=1, # display progress bar
n_jobs=2, # can be changed to use more CPUs
output_type="dict",
)
neg_log_pvals_permuted_ols_unmasked = nifti_masker.inverse_transform(
ols_outputs["logp_max_t"][0, :] # select first regressor
)
neg_log_pvals_tfce_unmasked = nifti_masker.inverse_transform(
ols_outputs["logp_max_tfce"][0, :] # select first regressor
)
[Parallel(n_jobs=2)]: Using backend LokyBackend with 2 concurrent workers.
[Parallel(n_jobs=2)]: Done 2 out of 2 | elapsed: 49.7s remaining: 0.0s
[Parallel(n_jobs=2)]: Done 2 out of 2 | elapsed: 49.7s finished
Visualization
import matplotlib.pyplot as plt
from nilearn import plotting
from nilearn.image import get_data
# Various plotting parameters
z_slice = 12 # plotted slice
threshold = -np.log10(0.1) # 10% corrected
vmax = max(
np.amax(ols_outputs["logp_max_t"]),
np.amax(neg_log_pvals_anova),
np.amax(ols_outputs["logp_max_tfce"]),
)
images_to_plot = {
"Parametric Test\n(Bonferroni FWE)": neg_log_pvals_anova_unmasked,
"Permutation Test\n(Max t-statistic FWE)": (
neg_log_pvals_permuted_ols_unmasked
),
"Permutation Test\n(Max TFCE FWE)": neg_log_pvals_tfce_unmasked,
}
fig, axes = plt.subplots(figsize=(12, 3), ncols=3)
for i_col, (title, img) in enumerate(images_to_plot.items()):
ax = axes[i_col]
n_detections = (get_data(img) > threshold).sum()
new_title = f"{title}\n{n_detections} sig. voxels"
plotting.plot_glass_brain(
img,
colorbar=True,
vmax=vmax,
display_mode="z",
plot_abs=False,
cut_coords=[12],
threshold=threshold,
figure=fig,
axes=ax,
)
ax.set_title(new_title)
fig.suptitle(
"Group left button press ($-\\log_{10}$ p-values)",
y=1.3,
fontsize=16,
)
Text(0.5, 1.3, 'Group left button press ($-\\log_{10}$ p-values)')
Total running time of the script: (0 minutes 58.513 seconds)
Estimated memory usage: 356 MB