Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.reporting.make_glm_report¶
- nilearn.reporting.make_glm_report(model, contrasts=None, title=None, bg_img='MNI152TEMPLATE', threshold=3.09, alpha=0.001, cluster_threshold=0, height_control='fpr', two_sided=False, min_distance=8.0, plot_type='slice', cut_coords=None, display_mode=None, report_dims=(1600, 800))[source]¶
Return HTMLReport object for a report which shows all important aspects of a fitted GLM.
The object can be opened in a browser, displayed in a notebook, or saved to disk as a standalone HTML file.
- Parameters:
- modelFirstLevelModel or SecondLevelModel object
A fitted first or second level model object. Must have the computed design matrix(ces).
- contrasts
dict
withstr
- ndarray key-value pairs orstr
orlist
ofstr
or ndarray orlist
of ndarray Contrasts information for a first or second level model.
Example:
Contrasts are passed to
contrast_def
for FirstLevelModel (nilearn.glm.first_level.FirstLevelModel.compute_contrast
) & second_level_contrast for SecondLevelModel (nilearn.glm.second_level.SecondLevelModel.compute_contrast
)- title
str
, default=None If string, represents the web page’s title and primary heading, model type is sub-heading. If None, page titles and headings are autogenerated using contrast names.
- bg_imgNiimg-like object, default=’MNI152TEMPLATE’
See Input and output: neuroimaging data representation. The background image for mask and stat maps to be plotted on upon. To turn off background image, just pass “bg_img=None”.
- threshold
float
, default=3.09 Cluster forming threshold in same scale as stat_img (either a t-scale or z-scale value). Used only if height_control is None.
- alpha
float
, default=0.001 Number controlling the thresholding (either a p-value or q-value). Its actual meaning depends on the height_control parameter. This function translates alpha to a z-scale threshold.
- cluster_threshold
int
, default=0 Cluster size threshold, in voxels.
- height_control
str
, default=’fpr’ false positive control meaning of cluster forming threshold: ‘fpr’ or ‘fdr’ or ‘bonferroni’ or None.
- two_sided
bool
, default=False Whether to employ two-sided thresholding or to evaluate positive values only.
- min_distance
float
, default=8.0 For display purposes only. Minimum distance between subpeaks in mm.
- plot_type
str
, {‘slice’, ‘glass’}, default=’slice’ Specifies the type of plot to be drawn for the statistical maps.
- cut_coordsNone, a
tuple
offloat
, orint
, optional The MNI coordinates of the point where the cut is performed.
If display_mode is ‘ortho’ or ‘tiled’, this should be a 3-tuple: (x, y, z)
For display_mode == “x”, “y”, or “z”, then these are the coordinates of each cut in the corresponding direction.
If None is given, the cuts are calculated automatically.
If display_mode is ‘mosaic’, and the number of cuts is the same for all directions, cut_coords can be specified as an integer. It can also be a length 3
tuple
specifying the number of cuts for every direction if these are different.
Note
If display_mode is “x”, “y” or “z”, cut_coords can be an integer, in which case it specifies the number of cuts to perform.
- display_mode
str
, default=None Default is ‘z’ if plot_type is ‘slice’; ‘ ortho’ if plot_type is ‘glass’.
Choose the direction of the cuts: ‘x’ - sagittal, ‘y’ - coronal, ‘z’ - axial, ‘l’ - sagittal left hemisphere only, ‘r’ - sagittal right hemisphere only, ‘ortho’ - three cuts are performed in orthogonal directions.
Possible values are: ‘ortho’, ‘x’, ‘y’, ‘z’, ‘xz’, ‘yx’, ‘yz’, ‘l’, ‘r’, ‘lr’, ‘lzr’, ‘lyr’, ‘lzry’, ‘lyrz’.
- report_dimsSequence[
int
,int
], default=(1600, 800) Specifies width, height (in pixels) of report window within a notebook. Only applicable when inserting the report into a Jupyter notebook. Can be set after report creation using report.width, report.height.
- Returns:
- report_textHTMLReport Object
Contains the HTML code for the GLM Report.
Examples
report = make_glm_report(model, contrasts) report.open_in_browser() report.save_as_html(destination_path)
Examples using nilearn.reporting.make_glm_report
¶
Decoding of a dataset after GLM fit for signal extraction
Default Mode Network extraction of ADHD dataset
First level analysis of a complete BIDS dataset from openneuro
Voxel-Based Morphometry on OASIS dataset