Note
Go to the end to download the full example code or to run this example in your browser via Binder.
Understanding NiftiMasker and mask computation¶
In this example, the NiftiMasker is used to automatically compute a mask.
The default strategy is based on the background.
Another option is to use a template.
For raw EPI, as in resting-state or movie watching time series, we need to use the ‘epi’ strategy of the NiftiMasker.
In addition, we show here how to tweak the different parameters of the
underlying routine that extract masks from EPI
compute_epi_mask.
Warning
If you are using Nilearn with a version older than 0.9.0,
then you should either upgrade your version or import maskers
from the input_data module instead of the maskers module.
That is, you should manually replace in the following example all occurrences of:
from nilearn.maskers import NiftiMasker
with:
from nilearn.input_data import NiftiMasker
Computing a mask from the background¶
The default strategy to compute a mask, like the NiftiMasker, is to try to detect the background.
With data that has already been masked this should work well, as it relies on a homogeneous background
Fetch the dataset¶
We fetch do some basic visualization of the image we will be using.
from nilearn.datasets import fetch_miyawaki2008
from nilearn.image import mean_img
from nilearn.plotting import plot_epi, show
miyawaki_dataset = fetch_miyawaki2008()
print(
"First functional nifti image (4D) is located "
f"at: {miyawaki_dataset.func[0]}"
)
miyawaki_filename = miyawaki_dataset.func[0]
miyawaki_mean_img = mean_img(miyawaki_filename)
plot_epi(miyawaki_mean_img, title="Mean EPI image")
show()

[fetch_miyawaki2008] Dataset found in /home/runner/nilearn_data/miyawaki2008
First functional nifti image (4D) is located at: /home/runner/nilearn_data/miyawaki2008/func/data_figure_run01.nii.gz
/home/runner/work/nilearn/nilearn/examples/06_manipulating_images/plot_mask_computation.py:54: UserWarning: You are using the 'agg' matplotlib backend that is non-interactive.
No figure will be plotted when calling matplotlib.pyplot.show() or nilearn.plotting.show().
You can fix this by installing a different backend: for example via
pip install PyQt6
show()
A NiftiMasker with the default strategy¶
Let’s use the NiftiMasker with its defaults parameters.
from nilearn.maskers import NiftiMasker
masker = NiftiMasker(verbose=1)
Note
When viewing an Nilearn estimator in a notebook (or more generally on an HTML page like here) you get an expandable ‘Parameters’ section where the parameters that have different values from their default are highlighted in orange. If you are using a version of scikit-learn >= 1.8.0 you will also get access to the ‘docstring’ description of each parameter.
[NiftiMasker.fit] Loading data from
'/home/runner/nilearn_data/miyawaki2008/func/data_figure_run01.nii.gz'
[NiftiMasker.fit] Computing mask
[NiftiMasker.fit] Resampling mask
[NiftiMasker.fit] Finished fit
Note
You can also note that after fitting, the HTML representation of the estimator looks different than before before fitting.
Visualize the mask¶
We can quickly get an idea about the estimated mask for this functional image by plotting the mask.
We get the estimated mask from the mask_img_ attribute of the masker:
the final _ of this attribute name means it was generated
by the fit method.
We can then plot it using the plot_roi function
with the mean functional image as background.
from nilearn.plotting import plot_roi
plot_roi(
masker.mask_img_, miyawaki_mean_img, title="Mask from already masked data"
)
# display the image
show()

/home/runner/work/nilearn/nilearn/examples/06_manipulating_images/plot_mask_computation.py:104: UserWarning: You are using the 'agg' matplotlib backend that is non-interactive.
No figure will be plotted when calling matplotlib.pyplot.show() or nilearn.plotting.show().
You can fix this by installing a different backend: for example via
pip install PyQt6
show()
View the generated mask¶
More information can be obtained about the masker and its mask
by generating a masker report.
This can be done using
the generate_report method.
Note
The generated report can be:
displayed in a Notebook,
opened in a browser using the
.open_in_browser()method,or saved to a file using the
.save_as_html(output_filepath)method.
Computing a mask from raw EPI data¶
From raw EPI data, there is no uniform background, and a different strategy is necessary
Fetch the dataset¶
Here we getch the movie watching based brain development fMRI dataset and once again do some basic visualization of the data.
Here we only work with the first 100 volumes of the image to speed up computation.
from nilearn.datasets import fetch_development_fmri
from nilearn.image import index_img
dataset = fetch_development_fmri(n_subjects=1)
epi_filename = dataset.func[0]
epi_img = index_img(epi_filename, slice(0, 100))
mean_func_img = mean_img(epi_img)
plot_epi(mean_func_img, title="Mean EPI image")
show()

[fetch_development_fmri] Dataset found in
/home/runner/nilearn_data/development_fmri
[fetch_development_fmri] Dataset found in
/home/runner/nilearn_data/development_fmri/development_fmri
[fetch_development_fmri] Dataset found in
/home/runner/nilearn_data/development_fmri/development_fmri
/home/runner/work/nilearn/nilearn/examples/06_manipulating_images/plot_mask_computation.py:151: UserWarning: You are using the 'agg' matplotlib backend that is non-interactive.
No figure will be plotted when calling matplotlib.pyplot.show() or nilearn.plotting.show().
You can fix this by installing a different backend: for example via
pip install PyQt6
show()
Simple mask extraction from EPI images¶
We need to specify an 'epi' mask_strategy,
as this is raw EPI data
masker = NiftiMasker(mask_strategy="epi", verbose=1)
masker.fit(epi_img)
report = masker.generate_report()
report
[NiftiMasker.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f7f3ee62110>
[NiftiMasker.fit] Computing mask
[NiftiMasker.fit] Resampling mask
[NiftiMasker.fit] Finished fit
Generate mask with strong opening¶
We can fine-tune the outline of the mask
by increasing the number of opening steps (opening=10)
using the mask_args argument of the NiftiMasker.
This effectively performs erosion
and dilation operations
on the outer voxel layers of the mask,
which can for example remove remaining skull parts in the image.
masker = NiftiMasker(mask_strategy="epi", mask_args={"opening": 10}, verbose=1)
masker.fit(epi_img)
report = masker.generate_report()
report
[NiftiMasker.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f7f3ee62110>
[NiftiMasker.fit] Computing mask
[NiftiMasker.fit] Resampling mask
[NiftiMasker.fit] Finished fit
Generate mask with a high lower cutoff¶
The NiftiMasker calls the nilearn.masking.compute_epi_mask function
to compute the mask from the EPI.
It has two important parameters: lower_cutoff and upper_cutoff.
These set the grey-value bounds
in which the masking algorithm will search for its threshold
(0 being the minimum of the image and 1 the maximum).
We will here increase the lower cutoff
to enforce selection of those voxels
that appear as bright in the EPI image.
masker = NiftiMasker(
mask_strategy="epi",
mask_args={"upper_cutoff": 0.9, "lower_cutoff": 0.8, "opening": False},
verbose=1,
)
masker.fit(epi_img)
report = masker.generate_report()
report
[NiftiMasker.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f7f3ee62110>
[NiftiMasker.fit] Computing mask
[NiftiMasker.fit] Resampling mask
[NiftiMasker.fit] Finished fit
Computing the mask from the MNI template¶
A mask can also be computed from the MNI template.
In this case, it is resampled to the target image.
Three options are available:
'whole-brain-template', 'gm-template', and 'wm-template'
depending on whether the whole-brain, gray matter,
or white matter template should be used.
masker = NiftiMasker(mask_strategy="whole-brain-template", verbose=1)
masker.fit(epi_img)
report = masker.generate_report()
report
[NiftiMasker.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f7f3ee62110>
[NiftiMasker.fit] Computing mask
[NiftiMasker.fit] Resampling mask
[NiftiMasker.fit] Finished fit
Compute and resample a mask¶
NiftiMasker also allows passing parameters directly
to resample_img.
We can specify a target_affine, a target_shape, or both.
For more information on these arguments,
see Visualization of affine resamplings.
The NiftiMasker report allows us to see the mask before and after resampling. Simply hover over the report to see the mask from the original image.
import numpy as np
masker = NiftiMasker(
mask_strategy="epi", target_affine=np.eye(3) * 8, verbose=1
)
masker.fit(epi_img)
report = masker.generate_report()
report
[NiftiMasker.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f7f3ee62110>
[NiftiMasker.fit] Computing mask
[NiftiMasker.fit] Resampling mask
[NiftiMasker.fit] Finished fit
After mask computation: extracting time series¶
We extract time series detrended and non-detrended.
trended_data = NiftiMasker(mask_strategy="epi", verbose=1).fit_transform(
epi_img
)
detrended_data = NiftiMasker(
mask_strategy="epi", detrend=True, verbose=1
).fit_transform(epi_img)
[NiftiMasker.wrapped] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f7f3ee62110>
[NiftiMasker.wrapped] Computing mask
[NiftiMasker.wrapped] Resampling mask
[NiftiMasker.wrapped] Finished fit
[NiftiMasker.wrapped] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f7f3ee62110>
[NiftiMasker.wrapped] Extracting region signals
[NiftiMasker.wrapped] Cleaning extracted signals
[NiftiMasker.wrapped] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f7f3ee62110>
[NiftiMasker.wrapped] Computing mask
[NiftiMasker.wrapped] Resampling mask
[NiftiMasker.wrapped] Finished fit
[NiftiMasker.wrapped] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f7f3ee62110>
[NiftiMasker.wrapped] Extracting region signals
[NiftiMasker.wrapped] Cleaning extracted signals
Once extracted, the timeseries are numpy arrays, so we can manipulate them with numpy
print(
f"Trended: mean {np.mean(trended_data):.2f}, "
f"std {np.std(trended_data):.2f}"
)
print(
f"Detrended: mean {np.mean(detrended_data):.2f}, "
f"std {np.std(detrended_data):.2f}"
)
Trended: mean 552.82, std 168.28
Detrended: mean -0.00, std 5.88
Total running time of the script: (0 minutes 19.998 seconds)
Estimated memory usage: 479 MB