Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.glm.LikelihoodModelResults¶
- class nilearn.glm.LikelihoodModelResults(theta, Y, model, cov=None, dispersion=1.0, nuisance=None)[source]¶
Class to contain results from likelihood models.
This is the class in which things like AIC, BIC, llf can be implemented as methods, not computed in, say, the fit method of OLSModel.
- __init__(theta, Y, model, cov=None, dispersion=1.0, nuisance=None)[source]¶
Set up results structure.
- Parameters:
- thetandarray
Parameter estimates from estimated model.
- Yndarray
Data.
- model
LikelihoodModel
instance Model used to generate fit.
- covNone or ndarray, optional
Covariance of thetas.
- dispersionscalar, default=1
Multiplicative factor in front of cov.
- nuisanceNone of ndarray, optional
Parameter estimates needed to compute logL.
Notes
The covariance of thetas is given by:
dispersion * cov
For (some subset of models) dispersion will typically be the mean square error from the estimated model (sigma^2)
- t(column=None)[source]¶
Return the (Wald) t-statistic for a given parameter estimate.
Use Tcontrast for more complicated (Wald) t-statistics.
- vcov(matrix=None, column=None, dispersion=None, other=None)[source]¶
Return Variance/covariance matrix of linear contrast.
- Parameters:
- matrix(dim, self.theta.shape[0]) array, optional
Numerical contrast specification, where
dim
refers to the ‘dimension’ of the contrast i.e. 1 for t contrasts, 1 or more for F contrasts.- columnint, optional
Alternative way of specifying contrasts (column index).
- dispersionfloat or (n_voxels,) array, optional
Value(s) for the dispersion parameters.
- other(dim, self.theta.shape[0]) array, optional
Alternative contrast specification (?).
- Returns:
- cov(dim, dim) or (n_voxels, dim, dim) array
The estimated covariance matrix/matrices.
- Returns the variance/covariance matrix of a linear contrast of the
- estimates of theta, multiplied by dispersion which will often be an
- estimate of dispersion, like, sigma^2.
- The covariance of interest is either specified as a (set of) column(s)
- or a matrix.
- Tcontrast(matrix, store=('t', 'effect', 'sd'), dispersion=None)[source]¶
Compute a Tcontrast for a row vector matrix.
To get the t-statistic for a single column, use the ‘t’ method.
- Parameters:
- matrix1D array-like
Contrast matrix.
- storesequence, default=(‘t’, ‘effect’, ‘sd’)
Components of t to store in results output object.
- dispersionNone or float, optional
- Returns:
- res
TContrastResults
object
- res
- Fcontrast(matrix, dispersion=None, invcov=None)[source]¶
Compute an F contrast for a contrast matrix
matrix
.Here,
matrix
M is assumed to be non-singular. More preciselyis assumed invertible. Here, is the generalized inverse of the design matrix of the model. There can be problems in non-OLS models where the rank of the covariance of the noise is not full.
See the contrasts module to see how to specify contrasts. In particular, the matrices from these contrasts will always be non-singular in the sense above.
- Parameters:
- matrix1D array-like
Contrast matrix.
- dispersionNone or float, optional
If None, use
self.dispersion
.- invcovNone or array, optional
Known inverse of variance covariance matrix. If None, calculate this matrix.
- Returns:
- f_res
FContrastResults
instance with attributes F, df_den, df_num
- f_res
Notes
For F contrasts, we now specify an effect and covariance.
- conf_int(alpha=0.05, cols=None, dispersion=None)[source]¶
Return the confidence interval of the specified theta estimates.
- Parameters:
- alphafloat, default=0.05
The alpha level for the confidence interval. ie., alpha = .05 returns a 95% confidence interval.
- colstuple, optional
cols specifies which confidence intervals to return.
- dispersionNone or scalar, optional
Scale factor for the variance / covariance (see class docstring and
vcov
method docstring).
- Returns:
- cisndarray
cis is shape
(len(cols), 2)
where each row contains [lower, upper] for the given entry in cols
Notes
Confidence intervals are two-tailed.
- tailsstring, optional
Possible values: ‘two’ | ‘upper’ | ‘lower’
Examples
>>> from numpy.random import standard_normal as stan >>> from nilearn.glm import OLSModel >>> x = np.hstack((stan((30, 1)), stan((30, 1)), stan((30, 1)))) >>> beta = np.array([3.25, 1.5, 7.0]) >>> y = np.dot(x, beta) + stan((30)) >>> model = OLSModel(x).fit(y) >>> confidence_intervals = model.conf_int(cols=(1, 2))