Examples of GLM reports

First level report

ADHD

Adapted from Default Mode Network extraction of ADHD dataset

Nilearn - Statistical Report - First Level Model<br>ADHD DMN Report

Statistical Report - First Level Model
ADHD DMN Report Implement the General Linear Model for single run :term:`fMRI` data.

Description

Data were analyzed using Nilearn (version= 0.13.1.dev41+g36e303c92; RRID:SCR_001362).

At the subject level, a mass univariate analysis was performed with a linear regression at each voxel of the brain, using generalized least squares with a global ar1 noise model to account for temporal auto-correlation and a cosine drift model (high pass filter=0.01 Hz).

Model details

First Level Model
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Mask

Mask image

The mask includes 62546 voxels (23.0 %) of the image.

Statistical Maps

seed_based_glm

Stat map plot for the contrast: seed_based_glm
Cluster Table
Height control bonferroni
α 9.00E-4
Threshold (computed) 5.549
Cluster size threshold (voxels) 15
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 3.0 -54.0 18.0 13.01 13284
1a 0.0 -57.0 30.0 12.68
1b 0.0 -48.0 30.0 11.96
1c -3.0 -51.0 18.0 11.91
2 0.0 51.0 -6.0 11.08 5832
2a 3.0 69.0 3.0 10.62
2b 0.0 57.0 3.0 10.31
2c 0.0 63.0 15.0 10.12
3 57.0 -66.0 27.0 10.91 1215
3a 48.0 -57.0 30.0 8.99
3b 51.0 -69.0 27.0 8.51
4 6.0 -84.0 -18.0 10.44 783
4a -3.0 -87.0 -15.0 7.59
5 -6.0 -87.0 -21.0 10.44 432
5a -12.0 -93.0 -21.0 10.44
6 18.0 42.0 51.0 9.99 594
7 -63.0 -12.0 -9.0 9.20 567
7a -63.0 -18.0 -15.0 9.05
8 -48.0 -69.0 42.0 8.93 1431
8a -42.0 -72.0 33.0 8.72
8b -54.0 -66.0 36.0 8.71
8c -48.0 -75.0 30.0 7.57
9 -12.0 39.0 54.0 8.52 432
9a -15.0 30.0 51.0 7.87
10 -24.0 30.0 48.0 8.51 702
10a -18.0 30.0 42.0 8.39
11 -36.0 -54.0 -24.0 8.04 783
11a -45.0 -54.0 -21.0 7.61
12 -51.0 -60.0 24.0 7.50 891

About

  • Date preprocessed:

BIDS features

Adapted from First level analysis of a complete BIDS dataset from openneuro

Nilearn - Statistical Report - First Level Model<br>FLM Bids Features Stat maps

Statistical Report - First Level Model
FLM Bids Features Stat maps Implement the General Linear Model for single run :term:`fMRI` data.

Description

Data were analyzed using Nilearn (version= 0.13.1.dev41+g36e303c92; RRID:SCR_001362).

At the subject level, a mass univariate analysis was performed with a linear regression at each voxel of the brain, using generalized least squares with a global ar1 noise model to account for temporal auto-correlation and a cosine drift model (high pass filter=0.01 Hz).

Input images were smoothed with gaussian kernel (full-width at half maximum=5.0 mm).

The following contrasts were computed using a fixed-effect approach across runs :

  • StopSuccess - Go

Model details

First Level Model
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Mask

Mask image

The mask includes 49554 voxels (20.2 %) of the image.

Statistical Maps

StopSuccess - Go

Stat map plot for the contrast: StopSuccess - Go
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 3
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -66.0 -45.0 22.0 5.31 6300
1a -66.0 -33.0 18.0 4.67
1b -48.0 -36.0 14.0 4.53
1c -57.0 -48.0 10.0 4.25
2 -42.0 15.0 26.0 4.92 2520
2a -51.0 9.0 34.0 4.72
2b -42.0 9.0 30.0 4.68
2c -57.0 12.0 38.0 4.59
3 -45.0 -12.0 26.0 4.84 252
4 57.0 -27.0 2.0 4.69 504
4a 66.0 -27.0 2.0 3.66
5 54.0 9.0 14.0 4.65 180
6 -66.0 -30.0 6.0 4.51 216
7 -6.0 -15.0 34.0 4.47 108
8 42.0 9.0 34.0 4.46 540
9 36.0 15.0 10.0 4.32 288
10 -60.0 -27.0 -2.0 4.32 108
11 6.0 18.0 34.0 4.26 2520
11a -3.0 15.0 46.0 4.08
11b 0.0 0.0 38.0 3.82
11c 3.0 9.0 50.0 3.80
12 6.0 6.0 54.0 4.21 468
12a 6.0 3.0 62.0 3.35
13 -45.0 21.0 2.0 4.19 504
13a -54.0 21.0 6.0 3.39
14 45.0 -21.0 42.0 4.16 432
15 63.0 -9.0 2.0 4.16 288
16 63.0 -24.0 30.0 4.08 360
17 -12.0 6.0 6.0 4.06 792
17a -9.0 -3.0 10.0 3.73
17b -9.0 6.0 14.0 3.71
18 -30.0 24.0 2.0 4.05 288
19 6.0 -3.0 74.0 4.05 144
20 -27.0 45.0 18.0 4.04 432
21 54.0 -39.0 34.0 4.02 108
22 -15.0 -66.0 38.0 3.99 324
23 -18.0 -63.0 6.0 3.99 180
24 -60.0 6.0 -2.0 3.96 144
25 3.0 -24.0 30.0 3.95 360
26 12.0 -72.0 22.0 3.94 360
27 36.0 -48.0 -26.0 3.93 108
28 33.0 42.0 34.0 3.91 756
28a 30.0 45.0 26.0 3.88
29 9.0 6.0 6.0 3.88 216
30 -12.0 -24.0 10.0 3.82 180
31 51.0 -30.0 14.0 3.78 648
32 -54.0 -57.0 -2.0 3.77 108
33 9.0 -15.0 14.0 3.70 108
34 0.0 0.0 66.0 3.63 180
35 36.0 36.0 30.0 3.63 108
36 -39.0 -45.0 38.0 3.57 108
37 9.0 30.0 26.0 3.44 144
38 45.0 18.0 2.0 3.40 144
39 60.0 -18.0 10.0 3.39 108
40 15.0 -30.0 2.0 3.39 252
41 -12.0 27.0 30.0 3.39 108
42 -42.0 -21.0 -2.0 3.32 216
43 -54.0 21.0 -2.0 3.24 108
44 3.0 -18.0 46.0 3.20 108

About

  • Date preprocessed:

FIAC

Adapted from Simple example of two-runs fMRI model fitting

Nilearn - Statistical Report - First Level Model

Statistical Report - First Level Model Implement the General Linear Model for single run :term:`fMRI` data.

Description

Data were analyzed using Nilearn (version= 0.13.1.dev41+g36e303c92; RRID:SCR_001362).

At the subject level, a mass univariate analysis was performed with a linear regression at each voxel of the brain, using generalized least squares with a global ar1 noise model to account for temporal auto-correlation and a cosine drift model (high pass filter=0.01 Hz).

Model details

First Level Model
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Mask

Mask image

The mask includes 28008 voxels (22.8 %) of the image.

Statistical Maps

SStSSp_minus_DStDSp

No suprathreshold cluster

Cluster Table
Height control fdr
α 0.001
Threshold (computed) inf
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0

No suprathreshold cluster

Deactivation

Stat map plot for the contrast: Deactivation
Cluster Table
Height control fdr
α 0.001
Threshold (computed) 5.0
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -39.0 -114.0 60.0 6.01 36
2 -51.0 -57.0 56.0 5.39 36
3 -51.0 -96.0 64.0 5.38 36
4 -42.0 -93.0 64.0 5.36 36
5 -126.0 -108.0 60.0 5.35 36
6 -45.0 -93.0 52.0 5.23 36
7 -135.0 -111.0 60.0 5.21 36
8 -45.0 -60.0 60.0 5.21 36
9 -57.0 -57.0 60.0 5.00 36

Effects_of_interest

Stat map plot for the contrast: Effects_of_interest
Cluster Table
Height control fdr
α 0.001
Threshold (computed) 3.974
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -33.0 -111.0 56.0 16.62 7020
1a -45.0 -99.0 64.0 13.71
1b -42.0 -111.0 56.0 13.50
1c -33.0 -96.0 56.0 12.10
2 -45.0 -75.0 56.0 13.99 1188
2a -42.0 -66.0 52.0 10.15
2b -51.0 -84.0 56.0 9.47
3 -138.0 -111.0 56.0 13.17 5508
3a -126.0 -117.0 56.0 11.96
3b -141.0 -105.0 48.0 11.50
3c -135.0 -96.0 48.0 11.43
4 -57.0 -90.0 48.0 9.65 540
4a -57.0 -78.0 40.0 9.43
5 -60.0 -72.0 36.0 8.94 72
6 -48.0 -57.0 56.0 8.58 1224
6a -45.0 -60.0 68.0 6.97
6b -57.0 -57.0 60.0 5.11
7 -123.0 -84.0 32.0 8.47 36
8 -126.0 -150.0 56.0 8.13 360
9 -141.0 -126.0 36.0 8.04 144
10 -135.0 -126.0 76.0 7.95 540
11 -135.0 -84.0 44.0 7.85 180
12 -87.0 -111.0 88.0 7.73 360
13 -99.0 -141.0 20.0 7.63 36
14 -96.0 -138.0 104.0 7.43 108
15 -144.0 -108.0 64.0 7.05 36
16 -60.0 -30.0 48.0 6.70 144
17 -90.0 -150.0 92.0 6.68 1116
18 -114.0 -135.0 20.0 6.64 36
19 -90.0 -129.0 100.0 6.63 360
20 -117.0 -111.0 56.0 6.57 72
21 -90.0 -114.0 112.0 6.49 36
22 -126.0 -150.0 80.0 6.45 288
23 -138.0 -117.0 40.0 6.43 108
24 -120.0 -48.0 68.0 6.43 216
25 -117.0 -114.0 60.0 6.34 144
26 -117.0 -69.0 80.0 6.34 72
27 -57.0 -75.0 88.0 6.33 72
28 -138.0 -87.0 48.0 6.31 36
29 -84.0 -135.0 100.0 6.29 540
30 -57.0 -78.0 16.0 6.29 72
31 -54.0 -72.0 16.0 6.28 144
32 -93.0 -135.0 108.0 6.26 108
33 -93.0 -147.0 4.0 6.23 108
34 -108.0 -141.0 0.0 6.19 252
35 -51.0 -63.0 76.0 6.19 324
35a -60.0 -63.0 72.0 4.47
36 -99.0 -141.0 60.0 6.17 36
37 -81.0 -132.0 60.0 6.17 612
37a -84.0 -126.0 52.0 6.11
37b -84.0 -123.0 60.0 4.66
38 -45.0 -108.0 36.0 6.14 36
39 -60.0 -36.0 52.0 6.12 72
40 -69.0 -108.0 112.0 6.09 72
41 -126.0 -150.0 48.0 6.08 36
42 -129.0 -60.0 48.0 6.07 108
43 -117.0 -90.0 104.0 6.05 72
44 -93.0 -150.0 80.0 6.05 72
45 -141.0 -102.0 40.0 6.01 72
46 -51.0 -63.0 44.0 6.01 72
47 -93.0 -69.0 80.0 6.00 144
48 -48.0 -60.0 44.0 5.96 36
49 -144.0 -99.0 44.0 5.94 72
50 -126.0 -54.0 80.0 5.94 72
51 -66.0 -24.0 52.0 5.92 72
52 -48.0 -78.0 92.0 5.92 72
53 -141.0 -99.0 56.0 5.91 36
54 -60.0 -99.0 64.0 5.86 72
55 -120.0 -132.0 24.0 5.86 36
56 -120.0 -36.0 56.0 5.86 144
57 -60.0 -51.0 56.0 5.82 72
58 -75.0 -57.0 76.0 5.78 144
59 -72.0 -147.0 8.0 5.77 108
60 -123.0 -90.0 36.0 5.76 36
61 -78.0 -144.0 96.0 5.74 288
62 -138.0 -78.0 64.0 5.74 72
63 -132.0 -69.0 88.0 5.73 36
64 -114.0 -144.0 8.0 5.71 180
65 -102.0 -144.0 80.0 5.70 72
66 -42.0 -120.0 24.0 5.68 36
67 -141.0 -78.0 56.0 5.68 36
68 -96.0 -60.0 72.0 5.67 504
69 -48.0 -114.0 64.0 5.67 108
70 -96.0 -45.0 60.0 5.64 72
71 -126.0 -72.0 88.0 5.61 72
72 -102.0 -75.0 104.0 5.61 108
73 -120.0 -66.0 96.0 5.61 36
74 -48.0 -108.0 32.0 5.60 108
75 -102.0 -33.0 56.0 5.59 108
76 -87.0 -42.0 88.0 5.57 72
77 -96.0 -42.0 92.0 5.55 36
78 -99.0 -75.0 108.0 5.53 36
79 -108.0 -30.0 80.0 5.52 36
80 -78.0 -51.0 76.0 5.50 36
81 -135.0 -105.0 88.0 5.49 72
82 -93.0 -87.0 84.0 5.48 36
83 -111.0 -120.0 32.0 5.48 180
84 -123.0 -153.0 68.0 5.47 36
85 -123.0 -84.0 100.0 5.47 108
86 -120.0 -24.0 60.0 5.47 72
87 -78.0 -117.0 84.0 5.47 144
88 -72.0 -156.0 20.0 5.46 36
89 -99.0 -108.0 80.0 5.40 36
90 -87.0 -138.0 64.0 5.39 36
91 -135.0 -60.0 72.0 5.36 72
92 -69.0 -84.0 24.0 5.36 72
93 -114.0 -48.0 88.0 5.33 36
94 -90.0 -126.0 84.0 5.32 144
95 -63.0 -147.0 12.0 5.28 36
96 -51.0 -114.0 28.0 5.26 144
97 -105.0 -147.0 92.0 5.25 108
98 -51.0 -78.0 88.0 5.22 72
99 -54.0 -69.0 48.0 5.21 36
100 -54.0 -120.0 24.0 5.21 36
101 -120.0 -60.0 56.0 5.19 72
102 -93.0 -150.0 24.0 5.16 36
103 -90.0 -117.0 92.0 5.16 144
104 -90.0 -123.0 112.0 5.16 36
105 -138.0 -81.0 60.0 5.15 36
106 -81.0 -30.0 72.0 5.14 108
107 -102.0 -36.0 84.0 5.14 108
108 -60.0 -90.0 56.0 5.14 36
109 -90.0 -132.0 64.0 5.13 108
110 -111.0 -123.0 108.0 5.12 36
111 -123.0 -102.0 64.0 5.11 36
112 -120.0 -36.0 72.0 5.09 36
113 -105.0 -141.0 24.0 5.06 144
114 -132.0 -141.0 32.0 5.05 36
115 -87.0 -18.0 60.0 5.03 36
116 -132.0 -102.0 96.0 5.03 72
117 -90.0 -96.0 112.0 5.03 36
118 -93.0 -42.0 56.0 5.02 36
119 -99.0 -33.0 84.0 5.01 36
120 -96.0 -147.0 16.0 5.01 36
121 -114.0 -150.0 88.0 5.00 72
122 -75.0 -108.0 112.0 4.98 108
123 -51.0 -75.0 44.0 4.98 72
124 -126.0 -138.0 92.0 4.97 72
125 -45.0 -81.0 64.0 4.97 72
126 -135.0 -54.0 36.0 4.94 36
127 -93.0 -78.0 84.0 4.94 144
128 -81.0 -84.0 24.0 4.94 36
129 -117.0 -114.0 104.0 4.92 72
130 -57.0 -75.0 96.0 4.92 36
131 -123.0 -87.0 40.0 4.91 36
132 -78.0 -48.0 80.0 4.91 72
133 -45.0 -117.0 24.0 4.90 36
134 -54.0 -93.0 56.0 4.89 72
135 -48.0 -135.0 12.0 4.88 36
136 -60.0 -57.0 52.0 4.87 36
137 -51.0 -42.0 64.0 4.86 36
138 -48.0 -102.0 96.0 4.85 36
139 -51.0 -138.0 80.0 4.85 72
140 -129.0 -63.0 84.0 4.84 36
141 -51.0 -141.0 88.0 4.84 36
142 -99.0 -51.0 96.0 4.83 36
143 -102.0 -144.0 12.0 4.82 108
144 -90.0 -141.0 96.0 4.82 36
145 -138.0 -132.0 88.0 4.81 36
146 -90.0 -69.0 96.0 4.80 72
147 -135.0 -126.0 64.0 4.80 36
148 -87.0 -33.0 52.0 4.79 36
149 -51.0 -66.0 36.0 4.78 72
150 -51.0 -78.0 16.0 4.77 36
151 -93.0 -72.0 96.0 4.75 36
152 -96.0 -72.0 84.0 4.75 72
153 -129.0 -57.0 64.0 4.74 36
154 -72.0 -132.0 64.0 4.71 36
155 -63.0 -78.0 40.0 4.71 36
156 -60.0 -90.0 64.0 4.71 36
157 -63.0 -57.0 48.0 4.69 36
158 -60.0 -75.0 40.0 4.68 36
159 -105.0 -93.0 112.0 4.68 36
160 -114.0 -123.0 104.0 4.67 36
161 -87.0 -42.0 64.0 4.67 36
162 -51.0 -75.0 52.0 4.65 36
163 -93.0 -60.0 100.0 4.60 36
164 -75.0 -39.0 80.0 4.60 36
165 -63.0 -54.0 92.0 4.60 36
166 -84.0 -126.0 64.0 4.59 36
167 -90.0 -141.0 104.0 4.58 36
168 -72.0 -33.0 48.0 4.58 36
169 -99.0 -45.0 92.0 4.57 36
170 -114.0 -147.0 92.0 4.57 72
171 -102.0 -120.0 28.0 4.56 36
172 -138.0 -135.0 48.0 4.55 72
173 -114.0 -111.0 108.0 4.55 72
174 -129.0 -105.0 88.0 4.55 36
175 -60.0 -72.0 96.0 4.54 36
176 -93.0 -150.0 72.0 4.54 36
177 -57.0 -33.0 48.0 4.54 36
178 -96.0 -138.0 96.0 4.53 36
179 -84.0 -147.0 100.0 4.52 108
180 -117.0 -147.0 88.0 4.52 36
181 -123.0 -144.0 72.0 4.52 36
182 -48.0 -78.0 24.0 4.50 36
183 -111.0 -93.0 108.0 4.49 72
184 -51.0 -135.0 16.0 4.49 36
185 -135.0 -48.0 44.0 4.49 36
186 -126.0 -63.0 52.0 4.48 36
187 -54.0 -63.0 48.0 4.46 36
188 -87.0 -36.0 48.0 4.45 72
189 -111.0 -108.0 112.0 4.45 36
190 -63.0 -114.0 28.0 4.44 36
191 -84.0 -153.0 80.0 4.44 36
192 -93.0 -108.0 72.0 4.43 36
193 -141.0 -90.0 56.0 4.42 36
194 -84.0 -150.0 16.0 4.41 36
195 -48.0 -57.0 76.0 4.40 36
196 -132.0 -129.0 92.0 4.39 72
197 -78.0 -60.0 80.0 4.38 36
198 -72.0 -78.0 96.0 4.38 36
199 -54.0 -39.0 48.0 4.37 72
200 -96.0 -144.0 12.0 4.37 72
201 -69.0 -132.0 68.0 4.36 36
202 -111.0 -114.0 112.0 4.35 36
203 -81.0 -126.0 104.0 4.35 36
204 -117.0 -54.0 72.0 4.35 36
205 -75.0 -150.0 20.0 4.35 36
206 -72.0 -141.0 96.0 4.33 36
207 -60.0 -87.0 100.0 4.32 36
208 -90.0 -147.0 56.0 4.32 36
209 -60.0 -78.0 100.0 4.32 36
210 -63.0 -72.0 40.0 4.32 36
211 -126.0 -69.0 92.0 4.30 36
212 -141.0 -120.0 68.0 4.30 36
213 -117.0 -30.0 68.0 4.29 36
214 -120.0 -147.0 72.0 4.28 36
215 -48.0 -120.0 24.0 4.28 36
216 -78.0 -111.0 80.0 4.27 36
217 -135.0 -132.0 40.0 4.27 36
218 -90.0 -123.0 68.0 4.26 36
219 -102.0 -78.0 108.0 4.26 36
220 -45.0 -66.0 64.0 4.25 36
221 -135.0 -129.0 36.0 4.24 36
222 -66.0 -105.0 24.0 4.23 36
223 -129.0 -48.0 72.0 4.23 36
224 -126.0 -48.0 76.0 4.22 36
225 -99.0 -147.0 12.0 4.22 36
226 -60.0 -60.0 60.0 4.22 36
227 -99.0 -144.0 76.0 4.22 72
228 -126.0 -81.0 96.0 4.21 36
229 -39.0 -75.0 72.0 4.21 36
230 -102.0 -111.0 80.0 4.20 36
231 -72.0 -78.0 104.0 4.20 72
232 -99.0 -48.0 60.0 4.19 36
233 -135.0 -78.0 44.0 4.19 36
234 -129.0 -81.0 48.0 4.18 36
235 -102.0 -135.0 28.0 4.18 36
236 -123.0 -108.0 84.0 4.18 72
237 -114.0 -150.0 28.0 4.18 36
238 -57.0 -132.0 68.0 4.17 36
239 -66.0 -126.0 108.0 4.16 36
240 -33.0 -105.0 40.0 4.16 36
241 -96.0 -150.0 12.0 4.15 36
242 -132.0 -66.0 36.0 4.15 36
243 -93.0 -51.0 96.0 4.14 36
244 -135.0 -57.0 40.0 4.14 36
245 -54.0 -93.0 72.0 4.14 72
246 -99.0 -63.0 96.0 4.14 36
247 -54.0 -141.0 28.0 4.13 36
248 -45.0 -126.0 56.0 4.13 36
249 -111.0 -138.0 20.0 4.13 36
250 -39.0 -132.0 60.0 4.12 36
251 -87.0 -147.0 96.0 4.12 36
252 -114.0 -21.0 64.0 4.11 36
253 -60.0 -108.0 12.0 4.11 36
254 -63.0 -153.0 24.0 4.10 36
255 -102.0 -42.0 88.0 4.10 36
256 -135.0 -138.0 32.0 4.10 36
257 -57.0 -162.0 40.0 4.09 36
258 -93.0 -51.0 68.0 4.09 36
259 -87.0 -48.0 64.0 4.09 36
260 -51.0 -147.0 68.0 4.08 36
261 -81.0 -21.0 60.0 4.07 36
262 -63.0 -96.0 56.0 4.07 36
263 -93.0 -147.0 76.0 4.07 36
264 -84.0 -39.0 80.0 4.07 36
265 -120.0 -90.0 100.0 4.06 36
266 -45.0 -138.0 56.0 4.05 36
267 -69.0 -27.0 44.0 4.05 36
268 -105.0 -150.0 12.0 4.04 36
269 -93.0 -147.0 96.0 4.04 36
270 -66.0 -147.0 20.0 4.03 36
271 -126.0 -57.0 40.0 4.03 36
272 -111.0 -45.0 88.0 4.03 36
273 -75.0 -135.0 84.0 4.02 36
274 -120.0 -30.0 56.0 4.01 36
275 -135.0 -63.0 76.0 4.01 36
276 -111.0 -153.0 84.0 4.01 36
277 -51.0 -147.0 80.0 4.00 36
278 -102.0 -135.0 92.0 4.00 36
279 -126.0 -60.0 84.0 4.00 36
280 -126.0 -69.0 28.0 4.00 36
281 -87.0 -33.0 80.0 3.99 36
282 -75.0 -87.0 108.0 3.99 36
283 -105.0 -33.0 84.0 3.98 36
284 -120.0 -141.0 20.0 3.98 36
285 -45.0 -111.0 96.0 3.98 36
286 -54.0 -69.0 72.0 3.97 36

About

  • Date preprocessed:
[0, 1]

Surface GLM: empty

Nilearn - Statistical Report - First Level Model

Statistical Report - First Level Model Implement the General Linear Model for single run :term:`fMRI` data.

WARNING

  • No contrast passed during report generation.
  • This estimator has not been fit yet. Make sure to run `fit` before inspecting reports.

Description

Data were analyzed using Nilearn (version= 0.13.1.dev41+g36e303c92; RRID:SCR_001362).

At the subject level, a mass univariate analysis was performed with a linear regression at each voxel of the brain, using generalized least squares with a global ar1 noise model to account for temporal auto-correlation None.

Model details

First Level Model
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Mask

No mask was provided.

Statistical Maps

No statistical map was provided.

About

  • Date preprocessed:

Surface GLM

Adapted from Example of surface-based first-level analysis

Nilearn - Statistical Report - First Level Model

Statistical Report - First Level Model Implement the General Linear Model for single run :term:`fMRI` data.

Description

Data were analyzed using Nilearn (version= 0.13.1.dev41+g36e303c92; RRID:SCR_001362).

At the subject level, a mass univariate analysis was performed with a linear regression at each voxel of the brain, using generalized least squares with a global ar1 noise model to account for temporal auto-correlation and a cosine drift model (high pass filter=0.01 Hz).

Regressors were entered into run-specific design matrices and onsets were convolved with a glover + derivative canonical hemodynamic response function for the following conditions:

  • visual_computation
  • visual_right_hand_button_press
  • sentence_reading
  • vertical_checkerboard
  • horizontal_checkerboard
  • visual_left_hand_button_press
  • audio_computation
  • audio_left_hand_button_press
  • audio_right_hand_button_press
  • sentence_listening

Model details

First Level Model
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Mask

Mask image

The mask includes 20484 voxels (100.0 %) of the image.

Statistical Maps

(left - right) button press

Stat map plot for the contrast: (left - right) button press
Cluster Table
Height control None
Threshold Z 3.0
Cluster ID Hemisphere Peak Stat Cluster Size (vertices)
1 left 3.92 4
2 right 7.36 140
3 right 3.59 13
4 right 3.31 1
5 right 3.08 2
6 right 3.06 1

About

  • Date preprocessed:

Second level report

Volume GLM

Adapted from Voxel-Based Morphometry on OASIS dataset

Nilearn - Statistical Report - Second Level Model

Statistical Report - Second Level Model Implement the :term:`General Linear Model` for multiple subject :term:`fMRI` data.

Description

Data were analyzed using Nilearn (version= 0.13.1.dev41+g36e303c92; RRID:SCR_001362).

At the group level, a mass univariate analysis was performed with a linear regression at each voxel of the brain.

Input images were smoothed with gaussian kernel (full-width at half maximum=2.0 mm).

The following contrasts were computed :

  • age
  • sex

Model details

Second Level Model
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Mask

Mask image

The mask includes 191002 voxels (21.2 %) of the image.

Statistical Maps

age

Stat map plot for the contrast: age
Cluster Table
Height control None
Threshold Z 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -10.0 -66.0 -4.0 4.53 8
2 -2.0 -2.0 -8.0 4.46 8
3 -14.0 -54.0 48.0 4.25 8
4 -20.0 -6.0 -34.0 4.25 8
5 6.0 48.0 34.0 4.14 8
6 50.0 16.0 -4.0 4.09 8
7 -8.0 -18.0 -2.0 3.89 8
8 18.0 26.0 -20.0 3.88 8
9 -2.0 26.0 32.0 3.87 8
10 -44.0 28.0 0.0 3.86 8
11 60.0 -4.0 -8.0 3.79 8
12 0.0 32.0 -2.0 3.78 8
13 32.0 46.0 -18.0 3.78 8
14 -42.0 -64.0 -8.0 3.76 8
15 -26.0 -34.0 14.0 3.75 8
16 -6.0 40.0 -8.0 3.71 8
17 -8.0 -58.0 22.0 3.69 8
18 -42.0 12.0 26.0 3.69 8
19 26.0 -32.0 -10.0 3.68 8
20 46.0 -26.0 -8.0 3.68 8
21 -30.0 18.0 -42.0 3.67 8
22 20.0 66.0 4.0 3.66 8
23 -48.0 8.0 40.0 3.65 8
24 -44.0 16.0 40.0 3.65 8
25 -62.0 -8.0 28.0 3.65 8
26 -60.0 -56.0 20.0 3.64 8
27 -16.0 -48.0 70.0 3.62 8
28 -16.0 70.0 12.0 3.62 8
29 38.0 -74.0 -44.0 3.62 8
30 -2.0 24.0 -12.0 3.60 8
31 -4.0 -6.0 24.0 3.60 8
32 -8.0 52.0 34.0 3.58 8
33 64.0 -50.0 32.0 3.57 8
34 -2.0 10.0 28.0 3.57 8
35 64.0 -26.0 24.0 3.57 8
36 -4.0 -28.0 -2.0 3.57 8
37 56.0 -8.0 40.0 3.56 8
38 16.0 0.0 16.0 3.56 8
39 0.0 -16.0 -36.0 3.55 8
40 -36.0 34.0 50.0 3.55 8
41 6.0 -58.0 0.0 3.54 8
42 22.0 34.0 -24.0 3.54 8
43 -16.0 32.0 -24.0 3.54 8
44 54.0 -44.0 52.0 3.53 8
45 12.0 -8.0 14.0 3.53 8
46 -58.0 -14.0 46.0 3.52 8
47 -10.0 6.0 12.0 3.51 16
48 46.0 -48.0 -20.0 3.50 8
49 -20.0 38.0 -16.0 3.49 8
50 12.0 14.0 2.0 3.48 8
51 0.0 0.0 36.0 3.48 8
52 2.0 -48.0 66.0 3.47 8
53 2.0 -40.0 60.0 3.47 8
54 26.0 64.0 16.0 3.47 8
55 -8.0 -14.0 26.0 3.46 8
56 -46.0 -66.0 -18.0 3.46 8
57 -52.0 -34.0 44.0 3.45 8
58 56.0 -14.0 -32.0 3.45 8
59 2.0 4.0 52.0 3.44 8
60 12.0 -22.0 4.0 3.44 8
61 66.0 -6.0 18.0 3.44 8
62 62.0 -10.0 8.0 3.44 8
63 4.0 22.0 22.0 3.44 8
64 64.0 2.0 -16.0 3.43 8
65 6.0 -46.0 38.0 3.42 8
66 4.0 -56.0 22.0 3.42 8
67 -10.0 -18.0 40.0 3.41 8
68 6.0 -58.0 28.0 3.41 8
69 8.0 -2.0 56.0 3.41 8
70 2.0 0.0 -2.0 3.41 8
71 56.0 -4.0 -32.0 3.41 8
72 -18.0 24.0 52.0 3.41 8
73 0.0 26.0 56.0 3.40 8
74 6.0 -76.0 -2.0 3.39 8
75 -12.0 42.0 -20.0 3.38 8
76 -4.0 -54.0 -8.0 3.38 8
77 -26.0 -30.0 60.0 3.37 8
78 32.0 -22.0 -28.0 3.37 8
79 -6.0 2.0 -16.0 3.36 8
80 -18.0 28.0 -2.0 3.36 8
81 24.0 34.0 40.0 3.36 8
82 30.0 -32.0 -14.0 3.35 8
83 2.0 32.0 -18.0 3.35 8
84 -26.0 32.0 -16.0 3.35 8
85 -18.0 -28.0 -26.0 3.34 8
86 -6.0 -10.0 12.0 3.34 8
87 10.0 -76.0 -48.0 3.34 8
88 34.0 -56.0 -50.0 3.33 8
89 2.0 -34.0 58.0 3.33 8
90 52.0 -18.0 -8.0 3.33 8
91 -2.0 46.0 38.0 3.32 8
92 -2.0 -4.0 14.0 3.32 8
93 60.0 -50.0 2.0 3.32 8
94 42.0 16.0 -46.0 3.32 8
95 30.0 -30.0 -4.0 3.31 8
96 28.0 40.0 42.0 3.31 8
97 -40.0 30.0 42.0 3.31 8
98 2.0 -32.0 -22.0 3.30 8
99 24.0 44.0 28.0 3.30 8
100 -4.0 -30.0 -8.0 3.30 8
101 -20.0 58.0 18.0 3.30 8
102 6.0 -92.0 32.0 3.29 8
103 -28.0 -38.0 16.0 3.29 8
104 12.0 48.0 10.0 3.29 8
105 -6.0 38.0 4.0 3.29 8
106 4.0 -20.0 22.0 3.29 8
107 -6.0 -80.0 36.0 3.28 8
108 -12.0 -44.0 68.0 3.28 8
109 62.0 6.0 -22.0 3.28 8
110 64.0 2.0 26.0 3.28 8
111 8.0 54.0 -22.0 3.27 8
112 -34.0 12.0 -46.0 3.27 8
113 -4.0 -12.0 26.0 3.27 8
114 28.0 -38.0 -26.0 3.27 8
115 -2.0 -18.0 54.0 3.27 8
116 10.0 -16.0 16.0 3.27 8
117 -64.0 -20.0 20.0 3.27 8
118 2.0 34.0 20.0 3.26 8
119 -2.0 20.0 26.0 3.26 8
120 -10.0 -86.0 28.0 3.25 8
121 20.0 -24.0 -4.0 3.25 8
122 0.0 42.0 12.0 3.25 8
123 42.0 -10.0 20.0 3.24 8
124 24.0 0.0 56.0 3.24 8
125 18.0 -26.0 12.0 3.23 8
126 8.0 12.0 62.0 3.23 8
127 4.0 -16.0 -18.0 3.22 8
128 -16.0 10.0 10.0 3.22 8
129 -24.0 -42.0 70.0 3.22 8
130 52.0 -36.0 -4.0 3.21 8
131 -18.0 66.0 8.0 3.21 8
132 22.0 -38.0 -2.0 3.21 8
133 12.0 70.0 6.0 3.21 8
134 24.0 4.0 66.0 3.21 8
135 -66.0 -20.0 32.0 3.20 8
136 44.0 -2.0 56.0 3.20 8
137 -58.0 4.0 -18.0 3.20 8
138 -4.0 -48.0 -8.0 3.20 8
139 54.0 -18.0 28.0 3.20 8
140 -10.0 4.0 66.0 3.19 8
141 8.0 14.0 -12.0 3.19 8
142 6.0 -58.0 -16.0 3.19 8
143 10.0 10.0 12.0 3.19 8
144 -50.0 -8.0 -12.0 3.19 8
145 54.0 -16.0 34.0 3.19 8
146 -40.0 -66.0 50.0 3.19 8
147 -2.0 -46.0 66.0 3.18 8
148 -42.0 16.0 -12.0 3.18 8
149 -14.0 -38.0 14.0 3.18 8
150 66.0 -10.0 18.0 3.18 8
151 -24.0 -44.0 -2.0 3.18 8
152 42.0 24.0 -6.0 3.18 8
153 -60.0 -14.0 36.0 3.18 8
154 56.0 -4.0 -8.0 3.18 8
155 -20.0 -26.0 14.0 3.17 8
156 30.0 -40.0 8.0 3.17 8
157 6.0 8.0 30.0 3.17 8
158 4.0 -40.0 78.0 3.17 8
159 16.0 34.0 56.0 3.17 8
160 68.0 -4.0 14.0 3.17 8
161 24.0 -74.0 44.0 3.17 8
162 32.0 -38.0 -28.0 3.17 8
163 -36.0 -62.0 38.0 3.16 8
164 34.0 34.0 46.0 3.16 8
165 -16.0 -40.0 8.0 3.16 8
166 10.0 -86.0 34.0 3.16 8
167 10.0 -32.0 18.0 3.15 8
168 -6.0 -46.0 28.0 3.15 8
169 -42.0 -30.0 46.0 3.15 8
170 -36.0 6.0 44.0 3.15 8
171 58.0 -52.0 4.0 3.15 8
172 10.0 0.0 14.0 3.15 8
173 -38.0 -14.0 -42.0 3.15 8
174 2.0 -54.0 32.0 3.15 8
175 16.0 58.0 32.0 3.15 8
176 -8.0 -10.0 26.0 3.14 8
177 56.0 -18.0 34.0 3.14 8
178 40.0 22.0 -6.0 3.14 8
179 40.0 -28.0 40.0 3.14 8
180 54.0 -14.0 -14.0 3.14 8
181 44.0 14.0 44.0 3.14 8
182 -28.0 -76.0 -58.0 3.13 8
183 14.0 -28.0 14.0 3.13 8
184 36.0 24.0 4.0 3.13 8
185 -2.0 12.0 30.0 3.13 8
186 48.0 -42.0 24.0 3.13 8
187 -46.0 -24.0 10.0 3.13 8
188 -42.0 4.0 -6.0 3.13 8
189 -32.0 -34.0 46.0 3.13 8
190 -14.0 -10.0 10.0 3.13 8
191 -26.0 -10.0 -46.0 3.12 8
192 -42.0 10.0 -8.0 3.12 8
193 44.0 -40.0 50.0 3.11 8
194 -60.0 -40.0 -26.0 3.11 8
195 2.0 10.0 56.0 3.11 8
196 32.0 34.0 -14.0 3.11 8
197 -42.0 -66.0 54.0 3.11 8
198 -22.0 -46.0 70.0 3.11 8
199 -28.0 -34.0 -10.0 3.10 8
200 6.0 26.0 54.0 3.10 8
201 14.0 -48.0 -6.0 3.10 8
202 -28.0 30.0 -22.0 3.10 8
203 2.0 -34.0 2.0 3.10 8
204 -10.0 -54.0 68.0 3.10 8
205 -58.0 -2.0 8.0 3.10 8
206 16.0 -6.0 -34.0 3.10 8
207 14.0 -28.0 -22.0 3.09 8
208 10.0 34.0 42.0 3.09 8
209 34.0 -94.0 6.0 3.09 8
210 18.0 -6.0 22.0 3.09 8
211 14.0 -76.0 -36.0 3.09 8

sex

Stat map plot for the contrast: sex
Cluster Table
Height control None
Threshold Z 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -34.0 -10.0 -18.0 4.73 8
2 -4.0 -22.0 18.0 4.62 8
3 52.0 32.0 0.0 4.27 8
4 -40.0 -76.0 -24.0 4.20 8
5 38.0 -74.0 -44.0 4.14 16
6 24.0 -74.0 -48.0 4.10 8
7 2.0 -44.0 -56.0 3.98 8
8 -24.0 -90.0 8.0 3.89 8
9 -30.0 -72.0 -24.0 3.87 8
10 -24.0 -78.0 -38.0 3.86 8
11 -4.0 46.0 -26.0 3.80 8
12 -12.0 8.0 20.0 3.78 8
13 32.0 6.0 32.0 3.75 8
14 -20.0 -78.0 -44.0 3.73 8
15 -58.0 -8.0 48.0 3.72 8
16 10.0 -34.0 -28.0 3.72 8
17 44.0 -66.0 -40.0 3.72 8
18 -36.0 -76.0 -28.0 3.71 8
19 -2.0 -44.0 -54.0 3.68 8
20 8.0 -82.0 -36.0 3.67 8
21 -12.0 -34.0 -28.0 3.67 8
22 -14.0 -74.0 -46.0 3.66 8
23 64.0 -32.0 -24.0 3.66 8
24 20.0 -70.0 -52.0 3.65 8
25 -38.0 2.0 30.0 3.65 8
26 -16.0 -74.0 -48.0 3.64 8
27 -40.0 32.0 -8.0 3.62 8
28 -2.0 -32.0 -20.0 3.62 8
29 2.0 52.0 18.0 3.60 8
30 -46.0 -64.0 -34.0 3.59 8
31 -24.0 -72.0 -36.0 3.59 16
32 -18.0 -80.0 -42.0 3.59 8
33 -16.0 -28.0 36.0 3.59 8
34 -24.0 -94.0 10.0 3.59 8
35 16.0 64.0 -14.0 3.59 8
36 24.0 -68.0 -40.0 3.58 16
37 -58.0 -2.0 48.0 3.58 8
38 10.0 -76.0 -48.0 3.58 8
39 -6.0 -52.0 -56.0 3.57 8
40 40.0 -70.0 -32.0 3.56 8
41 30.0 -80.0 -36.0 3.56 8
42 40.0 -66.0 -38.0 3.53 8
43 -36.0 -8.0 -26.0 3.51 8
44 -48.0 -52.0 56.0 3.50 8
45 -34.0 -38.0 -14.0 3.50 8
46 0.0 -2.0 18.0 3.50 8
47 42.0 -60.0 -42.0 3.50 8
48 34.0 -62.0 -40.0 3.48 8
49 -6.0 -18.0 62.0 3.48 8
50 22.0 -64.0 -28.0 3.48 8
51 -4.0 -8.0 20.0 3.47 8
52 -16.0 -74.0 -42.0 3.46 8
53 -8.0 0.0 40.0 3.46 8
54 -38.0 -74.0 -28.0 3.46 8
55 -40.0 34.0 28.0 3.46 8
56 28.0 -70.0 -36.0 3.45 8
57 42.0 -46.0 -22.0 3.45 8
58 -10.0 -8.0 38.0 3.44 8
59 -16.0 -74.0 -32.0 3.44 8
60 54.0 36.0 -10.0 3.43 8
61 -32.0 -66.0 -38.0 3.43 8
62 26.0 2.0 12.0 3.43 8
63 -16.0 -34.0 -46.0 3.42 8
64 -10.0 -76.0 -38.0 3.42 16
65 36.0 -54.0 40.0 3.42 8
66 38.0 -52.0 -46.0 3.42 8
67 -16.0 -78.0 44.0 3.41 8
68 -34.0 -76.0 36.0 3.41 8
69 -8.0 34.0 46.0 3.41 8
70 -10.0 20.0 8.0 3.41 8
71 -36.0 -66.0 -56.0 3.40 8
72 -26.0 -2.0 -12.0 3.40 8
73 32.0 -92.0 -8.0 3.39 8
74 -22.0 -72.0 -44.0 3.39 8
75 -58.0 0.0 38.0 3.39 8
76 34.0 -34.0 -38.0 3.37 8
77 -34.0 -54.0 -48.0 3.37 8
78 38.0 -18.0 46.0 3.36 8
79 20.0 -74.0 -44.0 3.36 8
80 34.0 -72.0 -36.0 3.36 8
81 20.0 50.0 46.0 3.36 8
82 -30.0 -58.0 -28.0 3.35 8
83 60.0 -36.0 -2.0 3.34 8
84 10.0 -70.0 -46.0 3.34 16
85 38.0 38.0 6.0 3.33 8
86 34.0 -60.0 -30.0 3.33 8
87 24.0 -52.0 10.0 3.33 8
88 18.0 -80.0 -26.0 3.32 8
89 -14.0 2.0 24.0 3.32 8
90 -40.0 -20.0 48.0 3.31 8
91 12.0 -78.0 -48.0 3.30 8
92 32.0 -78.0 -36.0 3.30 8
93 -34.0 -68.0 -28.0 3.30 8
94 30.0 -64.0 -4.0 3.29 8
95 2.0 -80.0 -10.0 3.29 16
96 42.0 -50.0 -44.0 3.29 8
97 8.0 -84.0 -12.0 3.29 8
98 16.0 -70.0 -52.0 3.27 8
99 -38.0 24.0 -24.0 3.26 8
100 -26.0 4.0 48.0 3.26 8
101 28.0 -84.0 22.0 3.26 8
102 -16.0 -82.0 -28.0 3.24 8
103 -36.0 -40.0 58.0 3.23 8
104 -44.0 -10.0 6.0 3.23 8
105 -14.0 -44.0 -46.0 3.23 8
106 14.0 -72.0 -46.0 3.23 8
107 34.0 -48.0 0.0 3.22 8
108 -14.0 42.0 20.0 3.21 8
109 48.0 -18.0 58.0 3.21 8
110 -10.0 10.0 18.0 3.20 8
111 16.0 -66.0 -46.0 3.20 8
112 -40.0 -48.0 -36.0 3.20 8
113 2.0 -82.0 -16.0 3.20 8
114 -46.0 -6.0 0.0 3.19 8
115 36.0 34.0 12.0 3.19 8
116 20.0 -86.0 -14.0 3.19 8
117 -42.0 -4.0 56.0 3.19 8
118 -10.0 -24.0 20.0 3.18 8
119 34.0 -56.0 -50.0 3.18 8
120 0.0 -24.0 46.0 3.17 8
121 -16.0 -70.0 -30.0 3.17 8
122 18.0 -66.0 -32.0 3.17 8
123 38.0 -44.0 -16.0 3.17 8
124 -32.0 -70.0 -56.0 3.17 8
125 40.0 -60.0 44.0 3.16 8
126 34.0 12.0 34.0 3.16 8
127 62.0 -38.0 4.0 3.16 8
128 36.0 -66.0 -42.0 3.15 8
129 40.0 -64.0 -44.0 3.15 8
130 -6.0 -42.0 8.0 3.15 8
131 -28.0 -8.0 -12.0 3.15 8
132 -14.0 16.0 34.0 3.15 8
133 32.0 -58.0 -44.0 3.15 8
134 -22.0 -94.0 -10.0 3.14 8
135 22.0 -80.0 -50.0 3.14 8
136 54.0 -4.0 50.0 3.14 8
137 12.0 -58.0 -34.0 3.13 8
138 40.0 -64.0 -36.0 3.13 8
139 -6.0 -14.0 22.0 3.13 8
140 -48.0 -8.0 54.0 3.13 8
141 12.0 -78.0 10.0 3.13 8
142 2.0 -44.0 -44.0 3.13 8
143 24.0 -16.0 12.0 3.12 8
144 -16.0 -70.0 -6.0 3.12 8
145 -28.0 -22.0 58.0 3.11 8
146 -34.0 -76.0 -36.0 3.11 16
147 -36.0 -60.0 -56.0 3.11 8
148 -46.0 -8.0 34.0 3.11 8
149 18.0 -50.0 -62.0 3.11 8
150 -20.0 -42.0 -10.0 3.11 8
151 -18.0 -32.0 -28.0 3.10 8
152 -52.0 -4.0 -38.0 3.10 8
153 28.0 -56.0 10.0 3.10 8
154 44.0 -62.0 -42.0 3.10 8
155 -32.0 -68.0 -58.0 3.10 8
156 -40.0 -66.0 -26.0 3.10 8
157 40.0 -64.0 10.0 3.10 8
158 24.0 -80.0 -38.0 3.09 8
159 34.0 -76.0 -24.0 3.09 8

About

  • Date preprocessed:

Surface GLM

Nilearn - Statistical Report - Second Level Model

Statistical Report - Second Level Model Implement the :term:`General Linear Model` for multiple subject :term:`fMRI` data.

WARNING

  • No contrast passed during report generation.
  • This estimator has not been fit yet. Make sure to run `fit` before inspecting reports.

Description

Data were analyzed using Nilearn (version= 0.13.1.dev41+g36e303c92; RRID:SCR_001362).

At the group level, a mass univariate analysis was performed with a linear regression at each voxel of the brain.

Model details

Second Level Model
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Mask

No mask was provided.

Statistical Maps

No statistical map was provided.

About

  • Date preprocessed:

GLM reports in notebooks

Warning

The reports in this page may appear slightly different than they would in a real report. If you suspect a bug, double check by running in a local notebook.

View HERE.