Note
Go to the end to download the full example code. or to run this example in your browser via Binder
Simple example of NiftiMasker use¶
Here is a simple example of automatic mask computation using the nifti masker. The mask is computed and visualized.
Note
If you are using Nilearn with a version older than 0.9.0
,
then you should either upgrade your version or import maskers
from the input_data
module instead of the maskers
module.
That is, you should manually replace in the following example all occurrences of:
from nilearn.maskers import NiftiMasker
with:
from nilearn.input_data import NiftiMasker
Retrieve the brain development functional dataset
from nilearn import datasets
dataset = datasets.fetch_development_fmri(n_subjects=1)
func_filename = dataset.func[0]
# print basic information on the dataset
print(f"First functional nifti image (4D) is at: {func_filename}")
[get_dataset_dir] Dataset found in /home/runner/nilearn_data/development_fmri
[get_dataset_dir] Dataset found in
/home/runner/nilearn_data/development_fmri/development_fmri
[get_dataset_dir] Dataset found in
/home/runner/nilearn_data/development_fmri/development_fmri
First functional nifti image (4D) is at: /home/runner/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
Compute the mask
from nilearn.maskers import NiftiMasker
# As this is raw movie watching based EPI, the background is noisy and we
# cannot rely on the 'background' masking strategy. We need to use the 'epi'
# one
nifti_masker = NiftiMasker(
standardize="zscore_sample",
mask_strategy="epi",
memory="nilearn_cache",
memory_level=2,
smoothing_fwhm=8,
)
nifti_masker.fit(func_filename)
mask_img = nifti_masker.mask_img_
Visualize the mask using the plot_roi method
from nilearn.image.image import mean_img
from nilearn.plotting import plot_roi
# calculate mean image for the background
mean_func_img = mean_img(func_filename, copy_header=True)
plot_roi(mask_img, mean_func_img, display_mode="y", cut_coords=4, title="Mask")
<nilearn.plotting.displays._slicers.YSlicer object at 0x7f704f74ed60>
Visualize the mask using the ‘generate_report’ method This report can be displayed in a Jupyter Notebook, opened in-browser using the .open_in_browser() method, or saved to a file using the .save_as_html(output_filepath) method.
Preprocess data with the NiftiMasker
nifti_masker.fit(func_filename)
fmri_masked = nifti_masker.transform(func_filename)
# fmri_masked is now a 2D matrix, (n_voxels x n_time_points)
/home/runner/work/nilearn/nilearn/.tox/doc/lib/python3.9/site-packages/nilearn/maskers/base_masker.py:122: UserWarning: Persisting input arguments took 0.59s to run.
If this happens often in your code, it can cause performance problems
(results will be correct in all cases).
The reason for this is probably some large input arguments for a wrapped
function (e.g. large strings).
THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
example so that they can fix the problem.
region_signals, aux = cache(
Run an algorithm
from sklearn.decomposition import FastICA
n_components = 10
ica = FastICA(n_components=n_components, random_state=42)
components_masked = ica.fit_transform(fmri_masked.T).T
/home/runner/work/nilearn/nilearn/.tox/doc/lib/python3.9/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.
warnings.warn(
Reverse masking, and display the corresponding map
components = nifti_masker.inverse_transform(components_masked)
from nilearn.image import index_img
# Visualize results
from nilearn.plotting import plot_stat_map, show
# calculate mean image for the background
mean_func_img = mean_img(func_filename, copy_header=True)
plot_stat_map(
index_img(components, 0),
mean_func_img,
display_mode="y",
cut_coords=4,
title="Component 0",
)
show()
Total running time of the script: (0 minutes 12.452 seconds)
Estimated memory usage: 1052 MB