Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.maskers.NiftiSpheresMasker¶
- class nilearn.maskers.NiftiSpheresMasker(seeds=None, radius=None, mask_img=None, allow_overlap=False, smoothing_fwhm=None, standardize=False, standardize_confounds=True, high_variance_confounds=False, detrend=False, low_pass=None, high_pass=None, t_r=None, dtype=None, memory=None, memory_level=1, verbose=0, reports=True, clean_args=None, **kwargs)[source]¶
Class for masking of Niimg-like objects using seeds.
NiftiSpheresMasker is useful when data from given seeds should be extracted.
Use case: summarize brain signals from seeds that were obtained from prior knowledge.
- Parameters:
- seeds
list
of triplet of coordinates in native space or None, default=None Seed definitions. List of coordinates of the seeds in the same space as the images (typically MNI or TAL).
- radius
float
, default=None Indicates, in millimeters, the radius for the sphere around the seed. By default signal is extracted on a single voxel.
- mask_imgNiimg-like object, default=None
See Input and output: neuroimaging data representation. Mask to apply to regions before extracting signals.
- allow_overlap
bool
, default=False If False, an error is raised if the maps overlaps (ie at least two maps have a non-zero value for the same voxel).
- smoothing_fwhm
float
orint
or None, optional. If smoothing_fwhm is not None, it gives the full-width at half maximum in millimeters of the spatial smoothing to apply to the signal.
- standardize{‘zscore_sample’, ‘zscore’, ‘psc’, True, False}, default=False
Strategy to standardize the signal:
'zscore_sample'
: The signal is z-scored. Timeseries are shifted to zero mean and scaled to unit variance. Uses sample std.'zscore'
: The signal is z-scored. Timeseries are shifted to zero mean and scaled to unit variance. Uses population std by calling defaultnumpy.std
with N -ddof=0
.'psc'
: Timeseries are shifted to zero mean value and scaled to percent signal change (as compared to original mean signal).True
: The signal is z-scored (same as option zscore). Timeseries are shifted to zero mean and scaled to unit variance.False
: Do not standardize the data.
- standardize_confounds
bool
, default=True If set to True, the confounds are z-scored: their mean is put to 0 and their variance to 1 in the time dimension.
- high_variance_confounds
bool
, default=False If True, high variance confounds are computed on provided image with
nilearn.image.high_variance_confounds
and default parameters and regressed out.- detrend
bool
, optional Whether to detrend signals or not.
- low_pass
float
orint
or None, default=None Low cutoff frequency in Hertz. If specified, signals above this frequency will be filtered out. If None, no low-pass filtering will be performed.
- high_pass
float
orint
or None, default=None High cutoff frequency in Hertz. If specified, signals below this frequency will be filtered out.
- t_r
float
orint
or None, default=None Repetition time, in seconds (sampling period). Set to None if not provided.
- dtypedtype like, “auto” or None, default=None
Data type toward which the data should be converted. If “auto”, the data will be converted to int32 if dtype is discrete and float32 if it is continuous.
- memoryNone, instance of
joblib.Memory
,str
, orpathlib.Path
Used to cache the masking process. By default, no caching is done. If a
str
is given, it is the path to the caching directory.- memory_level
int
, default=1 Rough estimator of the amount of memory used by caching. Higher value means more memory for caching. Zero means no caching.
- verbose
int
, default=0 Verbosity level (0 means no message).
- clean_args
dict
or None, default=None Keyword arguments to be passed to
clean
called within the masker. Withinclean
, kwargs prefixed with'butterworth__'
will be passed to the Butterworth filter. .. versionadded:: 0.11.2dev- kwargsdict
Keyword arguments to be passed to functions called within the masker. Kwargs prefixed with ‘clean__’ will be passed to
clean
. Withinclean
, kwargs prefixed with ‘butterworth__’ will be passed to the Butterworth filter (i.e., clean__butterworth__).Deprecated since version 0.11.2dev.
Use
clean_args
instead!It is recommended to pass parameters to use for data cleaning via
dict
to theclean_args
parameter.Passing parameters via “kwargs” is mutually exclusive with passing cleaning parameters via
clean_args
.
- seeds
- Attributes:
- mask_img_A 3D binary
nibabel.nifti1.Nifti1Image
or None. The mask of the data. If no
mask_img
was passed at masker construction, thenmask_img_
isNone
, otherwise is the resulting binarized version ofmask_img
where each voxel isTrue
if all values across samples (for example across timepoints) is finite value different from 0.- n_elements_
int
The number of seeds in the masker.
Added in version 0.9.2.
- seeds_
list
oflist
The coordinates of the seeds in the masker.
- reportsboolean, default=True
If set to True, data is saved in order to produce a report.
- mask_img_A 3D binary
See also
- __init__(seeds=None, radius=None, mask_img=None, allow_overlap=False, smoothing_fwhm=None, standardize=False, standardize_confounds=True, high_variance_confounds=False, detrend=False, low_pass=None, high_pass=None, t_r=None, dtype=None, memory=None, memory_level=1, verbose=0, reports=True, clean_args=None, **kwargs)[source]¶
- fit(imgs=None, y=None)[source]¶
Prepare signal extraction from regions.
All parameters are unused; they are for scikit-learn compatibility.
- fit_transform(imgs, y=None, confounds=None, sample_mask=None)[source]¶
Prepare and perform signal extraction.
- Parameters:
- imgs3D/4D Niimg-like object
See Input and output: neuroimaging data representation. Images to process.
- yNone
This parameter is unused. It is solely included for scikit-learn compatibility.
- confounds
numpy.ndarray
,str
,pathlib.Path
,pandas.DataFrame
orlist
of confounds timeseries, default=None This parameter is passed to
nilearn.signal.clean
. Please see the related documentation for details. shape: (number of scans, number of confounds)- sample_maskAny type compatible with numpy-array indexing, default=None
shape = (total number of scans - number of scans removed)
for explicit index (for example,sample_mask=np.asarray([1, 2, 4])
), orshape = (number of scans)
for binary mask (for example,sample_mask=np.asarray([False, True, True, False, True])
). Masks the images along the last dimension to perform scrubbing: for example to remove volumes with high motion and/or non-steady-state volumes. This parameter is passed tonilearn.signal.clean
.Added in version 0.8.0.
- Returns:
- signals
numpy.ndarray
Signal for each voxel. Output shape for :
3D images: (number of elements,) array
4D images: (number of scans, number of elements) array
- signals
- generate_report(displayed_spheres='all')[source]¶
Generate an HTML report for current
NiftiSpheresMasker
object.Note
This functionality requires to have
Matplotlib
installed.- Parameters:
- displayed_spheres
int
, orlist
, orndarray
, or “all”, default=”all” Indicates which spheres will be displayed in the HTML report.
If “all”: All spheres will be displayed in the report.
masker.generate_report("all")
Warning
If there are too many spheres, this might be time and memory consuming, and will result in very heavy reports.
If a
list
orndarray
: This indicates the indices of the spheres to be displayed in the report. For example, the following code will generate a report with spheres 6, 3, and 12, displayed in this specific order:
masker.generate_report([6, 3, 12])
If an
int
: This will only display the first n spheres, n being the value of the parameter. By default, the report will only contain the first 10 spheres. Example to display the first 16 spheres:
masker.generate_report(16)
- displayed_spheres
- Returns:
- reportnilearn.reporting.html_report.HTMLReport
HTML report for the masker.
- get_metadata_routing()¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- inverse_transform(region_signals)[source]¶
Compute voxel signals from spheres signals.
Any mask given at initialization is taken into account. Throws an error if
mask_img==None
- Parameters:
- signals1D/2D
numpy.ndarray
Extracted signal. If a 1D array is provided, then the shape should be (number of elements,). If a 2D array is provided, then the shape should be (number of scans, number of elements).
- signals1D/2D
- Returns:
- img
nibabel.nifti1.Nifti1Image
Transformed image in brain space. Output shape for :
1D array : 3D
nibabel.nifti1.Nifti1Image
will be returned.2D array : 4D
nibabel.nifti1.Nifti1Image
will be returned.
- img
- set_fit_request(*, imgs='$UNCHANGED$')¶
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- imgsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
imgs
parameter infit
.
- Returns:
- selfobject
The updated object.
- set_inverse_transform_request(*, region_signals='$UNCHANGED$')¶
Request metadata passed to the
inverse_transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toinverse_transform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toinverse_transform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- region_signalsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
region_signals
parameter ininverse_transform
.
- Returns:
- selfobject
The updated object.
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_transform_request(*, confounds='$UNCHANGED$', imgs='$UNCHANGED$', sample_mask='$UNCHANGED$')¶
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- confoundsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
confounds
parameter intransform
.- imgsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
imgs
parameter intransform
.- sample_maskstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_mask
parameter intransform
.
- Returns:
- selfobject
The updated object.
- transform(imgs, confounds=None, sample_mask=None)[source]¶
Apply mask, spatial and temporal preprocessing.
- Parameters:
- imgs3D/4D Niimg-like object
See Input and output: neuroimaging data representation. Images to process. If a 3D niimg is provided, a 1D array is returned.
- confounds
numpy.ndarray
,str
,pathlib.Path
,pandas.DataFrame
orlist
of confounds timeseries, default=None This parameter is passed to
nilearn.signal.clean
. Please see the related documentation for details. shape: (number of scans, number of confounds)- sample_maskAny type compatible with numpy-array indexing, default=None
shape = (total number of scans - number of scans removed)
for explicit index (for example,sample_mask=np.asarray([1, 2, 4])
), orshape = (number of scans)
for binary mask (for example,sample_mask=np.asarray([False, True, True, False, True])
). Masks the images along the last dimension to perform scrubbing: for example to remove volumes with high motion and/or non-steady-state volumes. This parameter is passed tonilearn.signal.clean
.Added in version 0.8.0.
- Returns:
- signals
numpy.ndarray
Signal for each voxel. Output shape for :
3D images: (number of elements,) array
4D images: (number of scans, number of elements) array
- signals
- transform_single_imgs(imgs, confounds=None, sample_mask=None)[source]¶
Extract signals from a single 4D niimg.
- Parameters:
- imgs3D/4D Niimg-like object
See Input and output: neuroimaging data representation. Images to process.
- confounds
numpy.ndarray
,str
,pathlib.Path
,pandas.DataFrame
orlist
of confounds timeseries, default=None This parameter is passed to
nilearn.signal.clean
. Please see the related documentation for details. shape: (number of scans, number of confounds)- sample_maskAny type compatible with numpy-array indexing, default=None
shape = (total number of scans - number of scans removed)
for explicit index (for example,sample_mask=np.asarray([1, 2, 4])
), orshape = (number of scans)
for binary mask (for example,sample_mask=np.asarray([False, True, True, False, True])
). Masks the images along the last dimension to perform scrubbing: for example to remove volumes with high motion and/or non-steady-state volumes. This parameter is passed tonilearn.signal.clean
.Added in version 0.8.0.
- Returns:
- signals
numpy.ndarray
Signal for each voxel. Output shape for :
3D images: (number of elements,) array
4D images: (number of scans, number of elements) array
- signals
Examples using nilearn.maskers.NiftiSpheresMasker
¶

Producing single subject maps of seed-to-voxel correlation

Beta-Series Modeling for Task-Based Functional Connectivity and Decoding