Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.decomposition.DictLearning¶
- class nilearn.decomposition.DictLearning(n_components=20, n_epochs=1, alpha=10, reduction_ratio='auto', dict_init=None, random_state=None, batch_size=20, method='cd', mask=None, smoothing_fwhm=4, standardize=True, detrend=True, low_pass=None, high_pass=None, t_r=None, target_affine=None, target_shape=None, mask_strategy='epi', mask_args=None, n_jobs=1, verbose=0, memory=None, memory_level=0)[source]¶
Perform a map learning algorithm based on spatial component sparsity, over a CanICA initialization.
This yields more stable maps than CanICA.
See Mensch et al.[1].
Added in version 0.2.
- Parameters:
- maskNiimg-like object or MultiNiftiMasker instance, optional
Mask to be used on data. If an instance of masker is passed, then its mask will be used. If no mask is given, it will be computed automatically by a MultiNiftiMasker with default parameters.
- n_components
int
, default=20 Number of components to extract.
- batch_size
int
, default=20 The number of samples to take in each batch.
- n_epochs
float
, default=1 Number of epochs the algorithm should run on the data.
- alpha
float
, default=10 Sparsity controlling parameter.
- dict_initNiimg-like object, optional
Initial estimation of dictionary maps. Would be computed from CanICA if not provided.
- reduction_ratio‘auto’ or
float
between 0. and 1., default=’auto’ Between 0. or 1. : controls data reduction in the temporal domain. 1. means no reduction, < 1. calls for an SVD based reduction.
if set to ‘auto’, estimator will set the number of components per reduced session to be n_components.
- method{‘cd’, ‘lars’}, default=’cd’
Coding method used by sklearn backend. Below are the possible values. lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.
- random_state
int
or np.random.RandomState, optional Pseudo-random number generator state used for random sampling.
- smoothing_fwhm
float
, optional. If smoothing_fwhm is not None, it gives the full-width at half maximum in millimeters of the spatial smoothing to apply to the signal. Default=4mm.
- standardize
bool
, default=True If standardize is True, the time-series are centered and normed: their variance is put to 1 in the time dimension.
- detrend
bool
, default=True If detrend is True, the time-series will be detrended before components extraction.
- target_affine
numpy.ndarray
, default=None If specified, the image is resampled corresponding to this new affine. target_affine can be a 3x3 or a 4x4 matrix.
Note
This parameter is passed to
nilearn.image.resample_img
.- target_shape
tuple
orlist
, default=None If specified, the image will be resized to match this new shape. len(target_shape) must be equal to 3.
Note
If target_shape is specified, a target_affine of shape (4, 4) must also be given.
Note
This parameter is passed to
nilearn.image.resample_img
.- low_pass
float
or None, default=None Low cutoff frequency in Hertz. If specified, signals above this frequency will be filtered out. If None, no low-pass filtering will be performed.
Note
This parameter is passed to
nilearn.image.resample_img
.- high_pass
float
or None, default=None High cutoff frequency in Hertz. If specified, signals below this frequency will be filtered out.
Note
This parameter is passed to
nilearn.image.resample_img
.- t_r
float
or None, default=None Repetition time, in seconds (sampling period). Set to None if not provided.
Note
This parameter is passed to
nilearn.image.resample_img
.- mask_strategy{“background”, “epi”, “whole-brain-template”,”gm-template”, “wm-template”}, optional
The strategy used to compute the mask:
"background"
: Use this option if your images present a clear homogeneous background."epi"
: Use this option if your images are raw EPI images"whole-brain-template"
: This will extract the whole-brain part of your data by resampling the MNI152 brain mask for your data’s field of view.Note
This option is equivalent to the previous ‘template’ option which is now deprecated.
"gm-template"
: This will extract the gray matter part of your data by resampling the corresponding MNI152 template for your data’s field of view.Added in version 0.8.1.
"wm-template"
: This will extract the white matter part of your data by resampling the corresponding MNI152 template for your data’s field of view.Added in version 0.8.1.
Note
Depending on this value, the mask will be computed from
nilearn.masking.compute_background_mask
,nilearn.masking.compute_epi_mask
, ornilearn.masking.compute_brain_mask
.Default=’epi’.
- mask_args
dict
, optional If mask is None, these are additional parameters passed to
nilearn.masking.compute_background_mask
, ornilearn.masking.compute_epi_mask
to fine-tune mask computation. Please see the related documentation for details.- memoryNone, instance of
joblib.Memory
,str
, orpathlib.Path
Used to cache the masking process. By default, no caching is done. If a
str
is given, it is the path to the caching directory.- memory_level
int
, default=0 Rough estimator of the amount of memory used by caching. Higher value means more memory for caching. Zero means no caching.
- n_jobs
int
, default=1 The number of CPUs to use to do the computation. -1 means ‘all CPUs’.
- verbose
int
, default=0 Verbosity level (0 means no message).
- Attributes:
- components_2D numpy array (n_components x n-voxels)
Masked dictionary components extracted from the input images.
Note
Use attribute components_img_ rather than manually unmasking components_ with masker_ attribute.
- components_img_4D Nifti image
4D image giving the extracted components. Each 3D image is a component.
Added in version 0.4.1.
- masker_instance of MultiNiftiMasker
Masker used to filter and mask data as first step. If an instance of MultiNiftiMasker is given in mask parameter, this is a copy of it. Otherwise, a masker is created using the value of mask and other NiftiMasker related parameters as initialization.
- mask_img_Niimg-like object
See Input and output: neuroimaging data representation. The mask of the data. If no mask was given at masker creation, contains the automatically computed mask.
References
- __init__(n_components=20, n_epochs=1, alpha=10, reduction_ratio='auto', dict_init=None, random_state=None, batch_size=20, method='cd', mask=None, smoothing_fwhm=4, standardize=True, detrend=True, low_pass=None, high_pass=None, t_r=None, target_affine=None, target_shape=None, mask_strategy='epi', mask_args=None, n_jobs=1, verbose=0, memory=None, memory_level=0)[source]¶
- fit(imgs, y=None, confounds=None)[source]¶
Compute the mask and the components across subjects.
- Parameters:
- imgslist of Niimg-like objects or
- list of :obj:`~nilearn.surface.SurfaceImage`
See Input and output: neuroimaging data representation. Data on which the mask is calculated. If this is a list, the affine (for Niimg-like objects) and mesh (for SurfaceImages) is considered the same for all
- confoundslist of CSV file paths, numpy.ndarrays
or pandas DataFrames, optional. This parameter is passed to nilearn.signal.clean. Please see the related documentation for details. Should match with the list of imgs given.
- Returns:
- selfobject
Returns the instance itself. Contains attributes listed at the object level.
- fit_transform(X, y=None, **fit_params)¶
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_paramsdict
Additional fit parameters.
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
- get_metadata_routing()¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- inverse_transform(loadings)[source]¶
Use provided loadings to compute corresponding linear component combination in whole-brain voxel space.
- Parameters:
- loadingslist of numpy array (n_samples x n_components)
Component signals to transform back into voxel signals
- Returns:
- reconstructed_imgslist of nibabel.Nifti1Image or
SurfaceImage
- For each loading, reconstructed Nifti1Image or SurfaceImage.
- reconstructed_imgslist of nibabel.Nifti1Image or
- property nifti_maps_masker_¶
- score(imgs, confounds=None, per_component=False)[source]¶
Score function based on explained variance on imgs.
Should only be used by DecompositionEstimator derived classes
- Parameters:
- imgsiterable of Niimg-like objects or
list
ofSurfaceImage
See Input and output: neuroimaging data representation. Data to be scored
- confoundsCSV file path or numpy.ndarray
or pandas DataFrame, optional This parameter is passed to nilearn.signal.clean. Please see the related documentation for details
- per_componentbool, default=False
Specify whether the explained variance ratio is desired for each map or for the global set of components.
- imgsiterable of Niimg-like objects or
- Returns:
- scorefloat
Holds the score for each subjects. Score is two dimensional if per_component is True. First dimension is squeezed if the number of subjects is one
- set_fit_request(*, confounds='$UNCHANGED$', imgs='$UNCHANGED$')¶
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- confoundsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
confounds
parameter infit
.- imgsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
imgs
parameter infit
.
- Returns:
- selfobject
The updated object.
- set_inverse_transform_request(*, loadings='$UNCHANGED$')¶
Request metadata passed to the
inverse_transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toinverse_transform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toinverse_transform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- loadingsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
loadings
parameter ininverse_transform
.
- Returns:
- selfobject
The updated object.
- set_output(*, transform=None)¶
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”}, default=None
Configure output of transform and fit_transform.
“default”: Default output format of a transformer
“pandas”: DataFrame output
“polars”: Polars output
None: Transform configuration is unchanged
Added in version 1.4: “polars” option was added.
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_score_request(*, confounds='$UNCHANGED$', imgs='$UNCHANGED$', per_component='$UNCHANGED$')¶
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- confoundsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
confounds
parameter inscore
.- imgsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
imgs
parameter inscore
.- per_componentstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
per_component
parameter inscore
.
- Returns:
- selfobject
The updated object.
- set_transform_request(*, confounds='$UNCHANGED$', imgs='$UNCHANGED$')¶
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- confoundsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
confounds
parameter intransform
.- imgsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
imgs
parameter intransform
.
- Returns:
- selfobject
The updated object.
- transform(imgs, confounds=None)[source]¶
Project the data into a reduced representation.
- Parameters:
- imgsiterable of Niimg-like objects or
list
ofSurfaceImage
See Input and output: neuroimaging data representation. Data to be projected
- confoundsCSV file path or numpy.ndarray
or pandas DataFrame, optional This parameter is passed to nilearn.signal.clean. Please see the related documentation for details
- imgsiterable of Niimg-like objects or
- Returns:
- loadingslist of 2D ndarray,
For each subject, each sample, loadings for each decomposition components shape: number of subjects * (number of scans, number of regions)
Examples using nilearn.decomposition.DictLearning
¶
Deriving spatial maps from group fMRI data using ICA and Dictionary Learning
Regions extraction using dictionary learning and functional connectomes