Note
Go to the end to download the full example code. or to run this example in your browser via Binder
Second-level fMRI model: true positive proportion in clusters¶
This script showcases the so-called “All resolution inference” procedure (Rosenblatt et al.[1]), in which the proportion of true discoveries in arbitrary clusters is estimated. The clusters can be defined from the input image, i.e. in a circular way, as the error control accounts for arbitrary cluster selection.
Fetch dataset¶
We download a list of left vs right button press contrasts from a localizer dataset. Note that we fetch individual t-maps that represent the BOLD activity estimate divided by the uncertainty about this estimate.
from nilearn.datasets import fetch_localizer_contrasts
n_subjects = 16
data = fetch_localizer_contrasts(
["left vs right button press"],
n_subjects,
legacy_format=False,
)
[get_dataset_dir] Dataset found in
/home/runner/nilearn_data/brainomics_localizer
[fetch_single_file] Downloading data from
https://osf.io/download/5d27cb281c5b4a001aa07e29/ ...
[fetch_single_file] ...done. (2 seconds, 0 min)
[fetch_single_file] Downloading data from
https://osf.io/download/5d27e787114a420016059c22/ ...
[fetch_single_file] ...done. (2 seconds, 0 min)
[fetch_single_file] Downloading data from
https://osf.io/download/5d27efab1c5b4a001aa0a0c2/ ...
[fetch_single_file] ...done. (2 seconds, 0 min)
[fetch_single_file] Downloading data from
https://osf.io/download/5d28095545253a001c3e59a2/ ...
[fetch_single_file] ...done. (2 seconds, 0 min)
[fetch_single_file] Downloading data from
https://osf.io/download/5d28144c114a42001804739e/ ...
[fetch_single_file] ...done. (2 seconds, 0 min)
[fetch_single_file] Downloading data from
https://osf.io/download/5d281e3d114a42001605cb02/ ...
[fetch_single_file] ...done. (2 seconds, 0 min)
[fetch_single_file] Downloading data from
https://osf.io/download/5d28375345253a001c3e90a2/ ...
[fetch_single_file] ...done. (1 seconds, 0 min)
[fetch_single_file] Downloading data from
https://osf.io/download/5d283f021c5b4a001aa100cb/ ...
[fetch_single_file] ...done. (1 seconds, 0 min)
[fetch_single_file] Downloading data from
https://osf.io/download/5d2852caa26b340018089ae5/ ...
[fetch_single_file] ...done. (1 seconds, 0 min)
[fetch_single_file] Downloading data from
https://osf.io/download/5d28660b1c5b4a001aa122c7/ ...
[fetch_single_file] ...done. (2 seconds, 0 min)
[fetch_single_file] Downloading data from
https://osf.io/download/5d2868f9114a42001704f6a5/ ...
[fetch_single_file] ...done. (1 seconds, 0 min)
[fetch_single_file] Downloading data from
https://osf.io/download/5d28847d114a42001904b87b/ ...
[fetch_single_file] ...done. (2 seconds, 0 min)
[fetch_single_file] Downloading data from
https://osf.io/download/5d289736114a4200170518d7/ ...
[fetch_single_file] ...done. (3 seconds, 0 min)
[fetch_single_file] Downloading data from
https://osf.io/download/5d28b135a26b3400160a648e/ ...
[fetch_single_file] ...done. (4 seconds, 0 min)
[fetch_single_file] Downloading data from
https://osf.io/download/5d28c0a81c5b4a001b9fb89a/ ...
[fetch_single_file] ...done. (2 seconds, 0 min)
Estimate second level model¶
We define the input maps and the design matrix for the second level model and fit it.
import pandas as pd
second_level_input = data["cmaps"]
design_matrix = pd.DataFrame(
[1] * len(second_level_input), columns=["intercept"]
)
Model specification and fit
from nilearn.glm.second_level import SecondLevelModel
second_level_model = SecondLevelModel(smoothing_fwhm=8.0, n_jobs=2)
second_level_model = second_level_model.fit(
second_level_input, design_matrix=design_matrix
)
To estimate the contrast is very simple. We can just provide the column name of the design matrix.
z_map = second_level_model.compute_contrast(output_type="z_score")
We threshold the second level contrast at uncorrected p < 0.001 and plot
from scipy.stats import norm
p_val = 0.001
p001_uncorrected = norm.isf(p_val)
from nilearn.glm import cluster_level_inference
proportion_true_discoveries_img = cluster_level_inference(
z_map, threshold=[3, 4, 5], alpha=0.05
)
from nilearn import plotting
plotting.plot_stat_map(
proportion_true_discoveries_img,
threshold=0.0,
display_mode="z",
vmax=1,
colorbar=True,
title="group left-right button press, proportion true positives",
)
plotting.plot_stat_map(
z_map,
threshold=p001_uncorrected,
colorbar=True,
display_mode="z",
title="group left-right button press (uncorrected p < 0.001)",
)
plotting.show()
References¶
Total running time of the script: (0 minutes 34.127 seconds)
Estimated memory usage: 175 MB