Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.datasets.fetch_atlas_surf_destrieux¶
- nilearn.datasets.fetch_atlas_surf_destrieux(data_dir=None, url=None, resume=True, verbose=1)[source]¶
Download and load Destrieux et al, 2010 cortical Deterministic atlas.
See Destrieux et al.[1].
This atlas returns 76 labels per hemisphere based on sulco-gryal patterns as distributed with Freesurfer in fsaverage5 surface space.
Added in version 0.3.
- Parameters:
- data_dir
pathlib.Path
orstr
, optional Path where data should be downloaded. By default, files are downloaded in a
nilearn_data
folder in the home directory of the user. See alsonilearn.datasets.utils.get_data_dirs
.- url
str
, default=None URL of file to download. Override download URL. Used for test only (or if you setup a mirror of the data).
- resume
bool
, default=True Whether to resume download of a partly-downloaded file.
- verbose
int
, default=1 Verbosity level (0 means no message).
- data_dir
- Returns:
- data
sklearn.utils.Bunch
Dictionary-like object, contains:
‘labels’:
list
ofstr
, list containing the 76 region labels.‘map_left’:
numpy.ndarray
ofint
, maps each vertex on the left hemisphere of the fsaverage5 surface to its index into the list of label name.‘map_right’:
numpy.ndarray
ofint
, maps each vertex on the right hemisphere of the fsaverage5 surface to its index into the list of label name.‘description’:
str
, description of the dataset.
- data
References
Examples using nilearn.datasets.fetch_atlas_surf_destrieux
¶
Loading and plotting of a cortical surface atlas
Making a surface plot of a 3D statistical map
Seed-based connectivity on the surface