Note
Go to the end to download the full example code. or to run this example in your browser via Binder
Matplotlib colormaps in Nilearn¶
Visualize HCP connectome workbench color maps shipped with Nilearn which can be used for plotting brain images on surface.
See Surface plotting for surface plotting details.
Plot color maps¶
import numpy as np
from nilearn.plotting import show
from nilearn.plotting.cm import _cmap_d as nilearn_cmaps
nmaps = len(nilearn_cmaps)
a = np.outer(np.arange(0, 1, 0.01), np.ones(10))
# Initialize the figure
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 4.2))
plt.subplots_adjust(top=0.4, bottom=0.05, left=0.01, right=0.99)
for index, cmap in enumerate(nilearn_cmaps):
plt.subplot(1, nmaps + 1, index + 1)
plt.imshow(a, cmap=nilearn_cmaps[cmap])
plt.axis("off")
plt.title(cmap, fontsize=10, va="bottom", rotation=90)
Plot matplotlib color maps¶
plt.figure(figsize=(10, 5))
plt.subplots_adjust(top=0.8, bottom=0.05, left=0.01, right=0.99)
deprecated_cmaps = ["Vega10", "Vega20", "Vega20b", "Vega20c", "spectral"]
m_cmaps = [
m
for m in plt.cm.datad
if not m.endswith("_r") and m not in deprecated_cmaps
]
m_cmaps.sort()
for index, cmap in enumerate(m_cmaps):
plt.subplot(1, len(m_cmaps) + 1, index + 1)
plt.imshow(a, cmap=plt.get_cmap(cmap), aspect="auto")
plt.axis("off")
plt.title(cmap, fontsize=10, va="bottom", rotation=90)
show()
Total running time of the script: (0 minutes 2.297 seconds)
Estimated memory usage: 115 MB