Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.plotting.displays.ZSlicer¶
- class nilearn.plotting.displays.ZSlicer(cut_coords, axes=None, black_bg=False, brain_color=(0.5, 0.5, 0.5), **kwargs)[source]¶
The
ZSlicer
class enables axial visualization with plotting functions of Nilearn likenilearn.plotting.plot_img
.This visualization mode can be activated by setting
display_mode='z'
:from nilearn.datasets import load_mni152_template from nilearn.plotting import plot_img img = load_mni152_template() # display is an instance of the ZSlicer class display = plot_img(img, display_mode="z")
- Attributes:
See also
nilearn.plotting.displays.XSlicer
Sagittal view
nilearn.plotting.displays.YSlicer
Coronal view
- add_contours(img, threshold=1e-06, filled=False, **kwargs)[source]¶
Contour a 3D map in all the views.
- Parameters:
- imgNiimg-like object
See Input and output: neuroimaging data representation. Provides image to plot.
- threshold
int
orfloat
orNone
, default=1e-6 Threshold to apply:
If
None
is given, the maps are not thresholded.If a number is given, it is used to threshold the maps, values below the threshold (in absolute value) are plotted as transparent.
- filled
bool
, default=False If
filled=True
, contours are displayed with color fillings.- kwargs
dict
Extra keyword arguments are passed to function
contour
, or functioncontourf
. Useful, arguments are typical “levels”, which is a list of values to use for plotting a contour or contour fillings (iffilled=True
), and “colors”, which is one color or a list of colors for these contours.
Notes
If colors are not specified, default coloring choices (from matplotlib) for contours and contour_fillings can be different.
- add_edges(img, color='r')[source]¶
Plot the edges of a 3D map in all the views.
- Parameters:
- imgNiimg-like object
See Input and output: neuroimaging data representation. The 3D map to be plotted. If it is a masked array, only the non-masked part will be plotted.
- colormatplotlib color:
str
or (r, g, b) value, default=’r’ The color used to display the edge map.
- add_markers(marker_coords, marker_color='r', marker_size=30, **kwargs)[source]¶
Add markers to the plot.
- Parameters:
- marker_coords
ndarray
of shape(n_markers, 3)
Coordinates of the markers to plot. For each slice, only markers that are 2 millimeters away from the slice are plotted.
- marker_colorpyplot compatible color or
list
of shape(n_markers,)
, default=’r’ List of colors for each marker that can be string or matplotlib colors.
- marker_size
float
orlist
offloat
of shape(n_markers,)
, default=30 Size in pixel for each marker.
- marker_coords
- add_overlay(img, threshold=1e-06, colorbar=False, cbar_tick_format='%.2g', cbar_vmin=None, cbar_vmax=None, **kwargs)[source]¶
Plot a 3D map in all the views.
- Parameters:
- imgNiimg-like object
See Input and output: neuroimaging data representation. If it is a masked array, only the non-masked part will be plotted.
- threshold
int
orfloat
orNone
, default=1e-6 Threshold to apply:
If
None
is given, the maps are not thresholded.If a number is given, it is used to threshold the maps: values below the threshold (in absolute value) are plotted as transparent.
- cbar_tick_format: str, default=”%.2g” (scientific notation)
Controls how to format the tick labels of the colorbar. Ex: use “%i” to display as integers.
- colorbar
bool
, default=False If
True
, display a colorbar on the right of the plots.- kwargs
dict
Extra keyword arguments are passed to function
imshow
.- cbar_vmin
float
, optional Minimal value for the colorbar. If None, the minimal value is computed based on the data.
- cbar_vmax
float
, optional Maximal value for the colorbar. If None, the maximal value is computed based on the data.
- annotate(left_right=True, positions=True, scalebar=False, size=12, scale_size=5.0, scale_units='cm', scale_loc=4, decimals=0, **kwargs)[source]¶
Add annotations to the plot.
- Parameters:
- left_right
bool
, default=True If
True
, annotations indicating which side is left and which side is right are drawn.- positions
bool
, default=True If
True
, annotations indicating the positions of the cuts are drawn.- scalebar
bool
, default=False If
True
, cuts are annotated with a reference scale bar. For finer control of the scale bar, please check out thedraw_scale_bar
method on the axes in “axes” attribute of this object.- size
int
, default=12 The size of the text used.
- scale_size
int
orfloat
, default=5.0 The length of the scalebar, in units of
scale_units
.- scale_units{‘cm’, ‘mm’}, default=’cm’
The units for the
scalebar
.- scale_loc
int
, default=4 The positioning for the scalebar. Valid location codes are:
1: “upper right”
2: “upper left”
3: “lower left”
4: “lower right”
5: “right”
6: “center left”
7: “center right”
8: “lower center”
9: “upper center”
10: “center”
- decimals
int
, default=0 Number of decimal places on slice position annotation. If zero, the slice position is integer without decimal point.
- kwargs
dict
Extra keyword arguments are passed to matplotlib’s text function.
- left_right
- property black_bg¶
Return black background.
- property brain_color¶
Return brain color.
- draw_cross(cut_coords=None, **kwargs)[source]¶
Draw a crossbar on the plot to show where the cut is performed.
- Parameters:
- cut_coords3-
tuple
offloat
, optional The position of the cross to draw. If
None
is passed, theOrthoSlicer
’s cut coordinates are used.- kwargs
dict
Extra keyword arguments are passed to function
matplotlib.pyplot.axhline
.
- cut_coords3-
- classmethod find_cut_coords(img=None, threshold=None, cut_coords=None)[source]¶
Instantiate the slicer and find cut coordinates.
- Parameters:
- img3D
Nifti1Image
The brain map.
- threshold
float
, optional The lower threshold to the positive activation. If
None
, the activation threshold is computed using the 80% percentile of the absolute value of the map.- cut_coords
list
offloat
, optional xyz world coordinates of cuts.
- img3D
- Returns:
- classmethod init_with_figure(img, threshold=None, cut_coords=None, figure=None, axes=None, black_bg=False, leave_space=False, colorbar=False, brain_color=(0.5, 0.5, 0.5), **kwargs)[source]¶
Initialize the slicer with an image.
- Parameters:
- imgNiimg-like object
- cut_coords3
tuple
ofint
The cut position, in world space.
- axes
matplotlib.axes.Axes
, optional The axes that will be subdivided in 3.
- black_bg
bool
, default=False If
True
, the background of the figure will be put to black. If you wish to save figures with a black background, you will need to passfacecolor='k', edgecolor='k'
tomatplotlib.pyplot.savefig
.- brain_color
tuple
, default=(0.5, 0.5, 0.5) The brain color to use as the background color (e.g., for transparent colorbars).
- savefig(filename, dpi=None)[source]¶
Save the figure to a file.
- Parameters:
- filename
str
The file name to save to. Its extension determines the file type, typically ‘.png’, ‘.svg’ or ‘.pdf’.
- dpi
None
or scalar, default=None The resolution in dots per inch.
- filename
- title(text, x=0.01, y=0.99, size=15, color=None, bgcolor=None, alpha=1, **kwargs)[source]¶
Write a title to the view.
- Parameters:
- text
str
The text of the title.
- x
float
, default=0.01 The horizontal position of the title on the frame in fraction of the frame width.
- y
float
, default=0.99 The vertical position of the title on the frame in fraction of the frame height.
- size
int
, default=15 The size of the title text.
- colormatplotlib color specifier, optional
The color of the font of the title.
- bgcolormatplotlib color specifier, optional
The color of the background of the title.
- alpha
float
, default=1 The alpha value for the background.
- kwargs
Extra keyword arguments are passed to matplotlib’s text function.
- text
Examples using nilearn.plotting.displays.ZSlicer
¶
More plotting tools from nilearn
Voxel-Based Morphometry on Oasis dataset
Encoding models for visual stimuli from Miyawaki et al. 2008
Predicted time series and residuals
Voxel-Based Morphometry on OASIS dataset
Massively univariate analysis of a calculation task from the Localizer dataset
Massively univariate analysis of face vs house recognition