Visualizing Megatrawls Network Matrices from Human Connectome Project

This example shows how to fetch network matrices data from HCP beta-release of the Functional Connectivity Megatrawl project.

See nilearn.datasets.fetch_megatrawls_netmats documentation for more details.

Fetching the Megatrawls Network matrices

Fetching the partial correlation matrices of dimensionality d=300 with timeseries method ‘eigen regression’

from nilearn import datasets

netmats = datasets.fetch_megatrawls_netmats(
    dimensionality=300,
    timeseries="eigen_regression",
    matrices="partial_correlation",
)
# Partial correlation matrices array of size (300, 300) are stored in the name
# of 'correlation_matrices'
partial_correlation = netmats.correlation_matrices
[get_dataset_dir] Dataset created in /home/runner/nilearn_data/Megatrawls
[fetch_single_file] Downloading data from
http://www.nitrc.org/frs/download.php/8037/Megatrawls.tgz ...
[fetch_single_file]  ...done. (0 seconds, 0 min)

[uncompress_file] Extracting data from
/home/runner/nilearn_data/Megatrawls/3f1468dc43a408bf84510b07cee95049/Megatrawls
.tgz...
[uncompress_file] .. done.

Visualization

Import nilearn plotting modules to use its utilities for plotting correlation matrices

from nilearn import plotting

title = "Partial correlation matrices\n for d=300"
display = plotting.plot_matrix(partial_correlation, colorbar=True, title=title)
plotting.show()
Partial correlation matrices  for d=300

Total running time of the script: (0 minutes 1.055 seconds)

Estimated memory usage: 147 MB

Gallery generated by Sphinx-Gallery