Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.connectome.GroupSparseCovariance¶
- class nilearn.connectome.GroupSparseCovariance(alpha=0.1, tol=0.001, max_iter=10, verbose=0, memory=None, memory_level=0)[source]¶
Covariance and precision matrix estimator.
The model used has been introduced in Varoquaux et al.[1], and the algorithm used is based on what is described in Honorio et al.[2].
- Parameters:
- alpha
float
, default=0.1 regularization parameter. With normalized covariances matrices and number of samples, sensible values lie in the [0, 1] range(zero is no regularization: output is not sparse).
- tolpositive
float
, default=1e-3 The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped.
- max_iter
int
, default=10 maximum number of iterations. The default value is rather conservative.
- verbose
int
, default=0 Verbosity level (0 means no message).
- memoryNone, instance of
joblib.Memory
,str
, orpathlib.Path
Used to cache the masking process. By default, no caching is done. If a
str
is given, it is the path to the caching directory.- memory_level
int
, default=0 Rough estimator of the amount of memory used by caching. Higher value means more memory for caching. Zero means no caching.
- alpha
- Attributes:
- covariances_numpy.ndarray, shape (n_features, n_features, n_subjects)
empirical covariance matrices.
- precisions_numpy.ndarraye, shape (n_features, n_features, n_subjects)
precisions matrices estimated using the group-sparse algorithm.
References
- fit(subjects, y=None)[source]¶
Fits the group sparse precision model according to the given training data and parameters.
- Parameters:
- subjects
list
of numpy.ndarray with shapes (n_samples, n_features) input subjects. Each subject is a 2D array, whose columns contain signals. Sample number can vary from subject to subject, but all subjects must have the same number of features (i.e. of columns).
- subjects
- Returns:
- selfGroupSparseCovariance instance
the object itself. Useful for chaining operations.
- get_metadata_routing()¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_fit_request(*, subjects='$UNCHANGED$')¶
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- subjectsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
subjects
parameter infit
.
- Returns:
- selfobject
The updated object.
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.