Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.plotting.view_connectome#
- nilearn.plotting.view_connectome(adjacency_matrix, node_coords, edge_threshold=None, edge_cmap=<matplotlib.colors.LinearSegmentedColormap object>, symmetric_cmap=True, linewidth=6.0, node_color='auto', node_size=3.0, colorbar=True, colorbar_height=0.5, colorbar_fontsize=25, title=None, title_fontsize=25)[source]#
Insert a 3d plot of a connectome into an HTML page.
- Parameters:
- adjacency_matrixndarray, shape=(n_nodes, n_nodes)
The weights of the edges.
- node_coordsndarray, shape=(n_nodes, 3)
The coordinates of the nodes in MNI space.
- node_colorcolor or sequence of colors, default=’auto’
Color(s) of the nodes.
- edge_thresholdstr, number or None, optional
If None, no thresholding. If it is a number only connections of amplitude greater than threshold will be shown. If it is a string it must finish with a percent sign, e.g. “25.3%”, and only connections of amplitude above the given percentile will be shown.
- edge_cmapstr or matplotlib colormap, default=cm.bwr
Colormap to use.
- symmetric_cmapbool, default=True
Make colormap symmetric (ranging from -vmax to vmax).
- linewidthfloat, default=6.0
Width of the lines that show connections.
- node_sizefloat, default=3.0
Size of the markers showing the seeds in pixels.
- colorbarbool, default=True
Add a colorbar.
- colorbar_heightfloat, default=0.5
Height of the colorbar, relative to the figure height.
- colorbar_fontsizeint, default=25
Fontsize of the colorbar tick labels.
- titlestr, optional
Title for the plot.
- title_fontsizeint, default=25
Fontsize of the title.
- Returns:
- ConnectomeViewplot of the connectome.
It can be saved as an html page or rendered (transparently) by the Jupyter notebook. Useful methods are :
‘resize’ to resize the plot displayed in a Jupyter notebook
‘save_as_html’ to save the plot to a file
‘open_in_browser’ to save the plot and open it in a web browser.
See also
nilearn.plotting.plot_connectome
projected views of a connectome in a glass brain.
nilearn.plotting.view_markers
interactive plot of colored markers
nilearn.plotting.view_surf
,nilearn.plotting.view_img_on_surf
interactive view of statistical maps or surface atlases on the cortical surface.
Examples using nilearn.plotting.view_connectome
#
Computing a connectome with sparse inverse covariance
Extracting signals of a probabilistic atlas of functional regions
Extract signals on spheres and plot a connectome