Simple example of two-runs fMRI model fitting

Here, we will go through a full step-by-step example of fitting a GLM to experimental data and visualizing the results. This is done on two runs of one subject of the FIAC dataset.

For more details on the data, please see experiment 2 in Dehaene-Lambertz et al.[1].

Here are the steps we will go through:

  1. Set up the GLM

  2. Compare run-specific and fixed effects contrasts

  3. Compute a range of contrasts across both runs

  4. Generate a report

Technically, this example shows how to handle two runs that contain the same experimental conditions. The model directly returns a fixed effect of the statistics across the two runs.

Create an output results in the current working directory.

from pathlib import Path

output_dir = Path.cwd() / "results" / "plot_two_runs_model"
output_dir.mkdir(exist_ok=True, parents=True)
print(f"Output will be saved to: {output_dir}")
Output will be saved to: /home/remi/github/nilearn/nilearn_doc_build/examples/04_glm_first_level/results/plot_two_runs_model

Set up the GLM

Inspecting ‘data’, we note that there are two runs. We will retain those two runs in a list of 4D img objects.

from nilearn.datasets import func

data = func.fetch_fiac_first_level()
fmri_imgs = [data["func1"], data["func2"]]
[get_dataset_dir] Dataset found in /home/remi/nilearn_data/fiac_nilearn.glm

Create a mean image for plotting purpose.

from nilearn.image import mean_img

mean_img_ = mean_img(fmri_imgs[0], copy_header=True)

The design matrices were pre-computed, we simply put them in a list of DataFrames.

import numpy as np
import pandas as pd

design_files = [data["design_matrix1"], data["design_matrix2"]]
design_matrices = [pd.DataFrame(np.load(df)["X"]) for df in design_files]

Initialize and run the GLM

First, we need to specify the model before fitting it to the data. Note that a brain mask was provided in the dataset, so that is what we will use.

from nilearn.glm.first_level import FirstLevelModel

fmri_glm = FirstLevelModel(
    mask_img=data["mask"],
    smoothing_fwhm=5,
    minimize_memory=True,
)

Compare run-specific and fixed effects contrasts

We can then compare run-specific and fixed effects. Here, we compare the activation produced from each run separately and then the fixed effects version.

cut_coords = [-129, -126, 49]
contrast_id = "DSt_minus_SSt"

Compute the statistics for the first run.

from nilearn import plotting

# Here, we define the contrast of interest for the first run.
# This may differ across runs depending on if the design matrices vary.
contrast_val = [[-1, -1, 1, 1]]

fmri_glm_run_1 = fmri_glm.fit(fmri_imgs[0], design_matrices=design_matrices[0])
summary_statistics_run_1 = fmri_glm_run_1.compute_contrast(
    contrast_val,
    output_type="all",
)
plotting.plot_stat_map(
    summary_statistics_run_1["z_score"],
    bg_img=mean_img_,
    threshold=3.0,
    cut_coords=cut_coords,
    title=f"{contrast_id}, first run",
)
plot two runs model
/home/remi/github/nilearn/nilearn_doc_build/.tox/doc/lib/python3.9/site-packages/nilearn/glm/contrasts.py:115: UserWarning:

t contrasts should be of length P=13, but it has length 4. The rest of the contrast was padded with zeros.


<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x740cde45da60>

Compute the statistics for the second run.

plot two runs model
/home/remi/github/nilearn/nilearn_doc_build/.tox/doc/lib/python3.9/site-packages/nilearn/glm/contrasts.py:115: UserWarning:

t contrasts should be of length P=13, but it has length 4. The rest of the contrast was padded with zeros.


<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x740cdde56fd0>

Compute the fixed effects statistics using the statistical maps of both runs.

We can use compute_fixed_effects to compute the fixed effects statistics using the outputs from the run-specific FirstLevelModel results.

from nilearn.glm.contrasts import compute_fixed_effects

contrast_imgs = [
    summary_statistics_run_1["effect_size"],
    summary_statistics_run_2["effect_size"],
]
variance_imgs = [
    summary_statistics_run_1["effect_variance"],
    summary_statistics_run_2["effect_variance"],
]

fixed_fx_contrast, fixed_fx_variance, fixed_fx_stat = compute_fixed_effects(
    contrast_imgs,
    variance_imgs,
    data["mask"],
)
plotting.plot_stat_map(
    fixed_fx_stat,
    bg_img=mean_img_,
    threshold=3.0,
    cut_coords=cut_coords,
    title=f"{contrast_id}, fixed effects",
)
plot two runs model
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x740cf858bca0>

Not unexpectedly, the fixed effects version displays higher peaks than the input runs. Computing fixed effects enhances the signal-to-noise ratio of the resulting brain maps.

Compute the fixed effects statistics using the preprocessed data of both runs.

A more straightforward alternative to fitting run-specific GLMs, than combining the results with compute_fixed_effects, is to simply fit the GLM to both runs at once.

Since we can assume that the design matrices of both runs have the same columns, in the same order, we can again reuse the first run’s contrast vector.

fmri_glm_multirun = fmri_glm.fit(fmri_imgs, design_matrices=design_matrices)

# We can just define the contrast array for one run and assume
# that the design matrix is the same for the other.
# However, if we want to be safe, we should define each contrast separately,
# and provide it as a list.
contrast_val = [
    np.array([[-1, -1, 1, 1]]),  # run 1
    np.array([[-1, -1, 1, 1]]),  # run 2
]

z_map = fmri_glm_multirun.compute_contrast(
    contrast_val,
    output_type="z_score",
)
plotting.plot_stat_map(
    z_map,
    bg_img=mean_img_,
    threshold=3.0,
    cut_coords=cut_coords,
    title=f"{contrast_id}, fixed effects",
)

plotting.show()
plot two runs model
/home/remi/github/nilearn/nilearn_doc_build/.tox/doc/lib/python3.9/site-packages/nilearn/glm/contrasts.py:115: UserWarning:

t contrasts should be of length P=13, but it has length 4. The rest of the contrast was padded with zeros.

You may note that the results are the same as the first fixed effects analysis, but with a lot less code.

Compute a range of contrasts across both runs

It may be useful to investigate a number of contrasts. Therefore, we will move beyond the original contrast of interest and both define and compute several.

Contrast specification

n_columns = design_matrices[0].shape[1]
contrasts = {
    "SStSSp_minus_DStDSp": np.array([[1, 0, 0, -1]]),
    "DStDSp_minus_SStSSp": np.array([[-1, 0, 0, 1]]),
    "DSt_minus_SSt": np.array([[-1, -1, 1, 1]]),
    "DSp_minus_SSp": np.array([[-1, 1, -1, 1]]),
    "DSt_minus_SSt_for_DSp": np.array([[0, -1, 0, 1]]),
    "DSp_minus_SSp_for_DSt": np.array([[0, 0, -1, 1]]),
    "Deactivation": np.array([[-1, -1, -1, -1, 4]]),
    "Effects_of_interest": np.eye(n_columns)[:5, :],  # An F-contrast
}

Next, we compute and plot the statistics for these new contrasts.

print("Computing contrasts...")
for index, (contrast_id, contrast_val) in enumerate(contrasts.items()):
    print(f"  Contrast {index + 1:02g} out of {len(contrasts)}: {contrast_id}")
    # Estimate the contasts.
    z_map = fmri_glm.compute_contrast(contrast_val, output_type="z_score")

    # Write the resulting stat images to file.
    z_image_path = output_dir / f"{contrast_id}_z_map.nii.gz"
    z_map.to_filename(z_image_path)
Computing contrasts...
  Contrast 01 out of 8: SStSSp_minus_DStDSp
/home/remi/github/nilearn/nilearn_doc_build/examples/04_glm_first_level/plot_two_runs_model.py:227: UserWarning:

One contrast given, assuming it for all 2 runs

  Contrast 02 out of 8: DStDSp_minus_SStSSp
  Contrast 03 out of 8: DSt_minus_SSt
  Contrast 04 out of 8: DSp_minus_SSp
  Contrast 05 out of 8: DSt_minus_SSt_for_DSp
  Contrast 06 out of 8: DSp_minus_SSp_for_DSt
  Contrast 07 out of 8: Deactivation
/home/remi/github/nilearn/nilearn_doc_build/.tox/doc/lib/python3.9/site-packages/nilearn/glm/contrasts.py:115: UserWarning:

t contrasts should be of length P=13, but it has length 5. The rest of the contrast was padded with zeros.

  Contrast 08 out of 8: Effects_of_interest
/home/remi/github/nilearn/nilearn_doc_build/.tox/doc/lib/python3.9/site-packages/nilearn/glm/contrasts.py:166: UserWarning:

Running approximate fixed effects on F statistics.

Generating a report

Since we have already computed the FirstLevelModel and have a number of contrasts, we can quickly create a summary report.

report = fmri_glm_multirun.generate_report(
    contrasts,
    bg_img=mean_img_,
    title="two-runs fMRI model fitting",
)
/home/remi/github/nilearn/nilearn_doc_build/.tox/doc/lib/python3.9/site-packages/nilearn/_utils/helpers.py:94: UserWarning:

Contrasts will be padded with 9 column(s) of zeros.

/home/remi/github/nilearn/nilearn_doc_build/.tox/doc/lib/python3.9/site-packages/nilearn/_utils/helpers.py:94: UserWarning:

Contrasts will be padded with 8 column(s) of zeros.

/home/remi/github/nilearn/nilearn_doc_build/.tox/doc/lib/python3.9/site-packages/nilearn/reporting/glm_reporter.py:545: UserWarning:

One contrast given, assuming it for all 2 runs

We have several ways to access the report:

# report  # This report can be viewed in a notebook
# report.open_in_browser()

# or we can save as an html file
# report.save_as_html(output_dir / 'report.html')

References

Total running time of the script: (0 minutes 54.788 seconds)

Estimated memory usage: 1010 MB

Gallery generated by Sphinx-Gallery