Note
Go to the end to download the full example code. or to run this example in your browser via Binder
Visualizing multiscale functional brain parcellations¶
This example shows how to download and fetch brain parcellations of
multiple networks using
nilearn.datasets.fetch_atlas_basc_multiscale_2015
and visualize them using plotting function nilearn.plotting.plot_roi
.
We show here only three different networks of ‘symmetric’ version. For more details about different versions and different networks, please refer to its documentation.
Retrieving multiscale group brain parcellations¶
# import datasets module and use `fetch_atlas_basc_multiscale_2015` function
from nilearn import datasets
parcellations = [
datasets.fetch_atlas_basc_multiscale_2015(version="sym", resolution=64),
datasets.fetch_atlas_basc_multiscale_2015(version="sym", resolution=197),
datasets.fetch_atlas_basc_multiscale_2015(version="sym", resolution=444),
]
# We show here networks of 64, 197, 444
networks_64 = parcellations[0]["maps"]
networks_197 = parcellations[1]["maps"]
networks_444 = parcellations[2]["maps"]
[get_dataset_dir] Dataset found in /home/remi/nilearn_data/basc_multiscale_2015
[get_dataset_dir] Dataset found in /home/remi/nilearn_data/basc_multiscale_2015
[get_dataset_dir] Dataset found in /home/remi/nilearn_data/basc_multiscale_2015
Visualizing brain parcellations¶
# import plotting module and use `plot_roi` function, since the maps are in 3D
from nilearn import plotting
# The coordinates of all plots are selected automatically by itself
# We manually change the colormap of our choice
plotting.plot_roi(
networks_64, cmap=plotting.cm.bwr, title="64 regions of brain clusters"
)
plotting.plot_roi(
networks_197, cmap=plotting.cm.bwr, title="197 regions of brain clusters"
)
plotting.plot_roi(
networks_444, cmap=plotting.cm.bwr_r, title="444 regions of brain clusters"
)
plotting.show()
Total running time of the script: (0 minutes 3.245 seconds)
Estimated memory usage: 146 MB