Note
Go to the end to download the full example code or to run this example in your browser via Binder
Matplotlib colormaps in Nilearn#
Visualize HCP connectome workbench color maps shipped with Nilearn which can be used for plotting brain images on surface.
See Surface plotting for surface plotting details.
Plot color maps#
try:
import matplotlib.pyplot as plt
except ImportError:
raise RuntimeError("This script needs the matplotlib library")
import numpy as np
from nilearn.plotting import show
from nilearn.plotting.cm import _cmap_d as nilearn_cmaps
nmaps = len(nilearn_cmaps)
a = np.outer(np.arange(0, 1, 0.01), np.ones(10))
# Initialize the figure
plt.figure(figsize=(10, 4.2))
plt.subplots_adjust(top=0.4, bottom=0.05, left=0.01, right=0.99)
for index, cmap in enumerate(nilearn_cmaps):
plt.subplot(1, nmaps + 1, index + 1)
plt.imshow(a, cmap=nilearn_cmaps[cmap])
plt.axis("off")
plt.title(cmap, fontsize=10, va="bottom", rotation=90)
Plot matplotlib color maps#
plt.figure(figsize=(10, 5))
plt.subplots_adjust(top=0.8, bottom=0.05, left=0.01, right=0.99)
deprecated_cmaps = ["Vega10", "Vega20", "Vega20b", "Vega20c", "spectral"]
m_cmaps = [
m
for m in plt.cm.datad
if not m.endswith("_r") and m not in deprecated_cmaps
]
m_cmaps.sort()
for index, cmap in enumerate(m_cmaps):
plt.subplot(1, len(m_cmaps) + 1, index + 1)
plt.imshow(a, cmap=plt.get_cmap(cmap), aspect="auto")
plt.axis("off")
plt.title(cmap, fontsize=10, va="bottom", rotation=90)
show()
Total running time of the script: (0 minutes 3.689 seconds)
Estimated memory usage: 18 MB