Note

This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.

nilearn.image.index_img#

nilearn.image.index_img(imgs, index)[source]#

Indexes into a 4D Niimg-like object in the fourth dimension.

Common use cases include extracting a 3D image out of img or creating a 4D image whose data is a subset of img data.

Parameters:
imgs4D Niimg-like object

See Input and output: neuroimaging data representation.

indexAny type compatible with numpy array indexing

Used for indexing the 4D data array in the fourth dimension.

Returns:
Nifti1Image

Indexed image.

Examples

First we concatenate two MNI152 images to create a 4D-image:

>>> from nilearn import datasets
>>> from nilearn.image import concat_imgs, index_img
>>> joint_mni_image = concat_imgs([datasets.load_mni152_template(),
...                                datasets.load_mni152_template()])
>>> print(joint_mni_image.shape)
(197, 233, 189, 2)

We can now select one slice from the last dimension of this 4D-image:

>>> single_mni_image = index_img(joint_mni_image, 1)
>>> print(single_mni_image.shape)
(197, 233, 189)

We can also select multiple frames using the slice constructor:

>>> five_mni_images = concat_imgs([datasets.load_mni152_template()] * 5)
>>> print(five_mni_images.shape)
(197, 233, 189, 5)

>>> first_three_images = index_img(five_mni_images,
...                                slice(0, 3))
>>> print(first_three_images.shape)
(197, 233, 189, 3)

Examples using nilearn.image.index_img#

ROI-based decoding analysis in Haxby et al. dataset

ROI-based decoding analysis in Haxby et al. dataset

Setting a parameter by cross-validation

Setting a parameter by cross-validation

Different classifiers in decoding the Haxby dataset

Different classifiers in decoding the Haxby dataset

Regions extraction using dictionary learning and functional connectomes

Regions extraction using dictionary learning and functional connectomes

Clustering methods to learn a brain parcellation from fMRI

Clustering methods to learn a brain parcellation from fMRI

Regions Extraction of Default Mode Networks using Smith Atlas

Regions Extraction of Default Mode Networks using Smith Atlas

Simple example of NiftiMasker use

Simple example of NiftiMasker use

Understanding NiftiMasker and mask computation

Understanding NiftiMasker and mask computation

Multivariate decompositions: Independent component analysis of fMRI

Multivariate decompositions: Independent component analysis of fMRI

Massively univariate analysis of face vs house recognition

Massively univariate analysis of face vs house recognition

Advanced decoding using scikit learn

Advanced decoding using scikit learn