Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.maskers.SurfaceMasker¶
- class nilearn.maskers.SurfaceMasker(mask_img=None, smoothing_fwhm=None, standardize=False, standardize_confounds=True, detrend=False, high_variance_confounds=False, low_pass=None, high_pass=None, t_r=None, memory=None, memory_level=1, verbose=0, reports=True, cmap='inferno', clean_args=None)[source]¶
- Extract data from a - SurfaceImage.- Added in version 0.11.0. - Parameters:
- mask_imgSurfaceImageor None, default=None
- smoothing_fwhmfloatorintor None, optional.
- If smoothing_fwhm is not None, it gives the full-width at half maximum in millimeters of the spatial smoothing to apply to the signal. This parameter is not implemented yet. 
- standardize{‘zscore_sample’, ‘zscore’, ‘psc’, True, False}, default=False
- Strategy to standardize the signal: - 'zscore_sample': The signal is z-scored. Timeseries are shifted to zero mean and scaled to unit variance. Uses sample std.
- 'zscore': The signal is z-scored. Timeseries are shifted to zero mean and scaled to unit variance. Uses population std by calling default- numpy.stdwith N -- ddof=0.
- 'psc': Timeseries are shifted to zero mean value and scaled to percent signal change (as compared to original mean signal).
- True: The signal is z-scored (same as option zscore). Timeseries are shifted to zero mean and scaled to unit variance.
- False: Do not standardize the data.
 
- standardize_confoundsbool, default=True
- If set to True, the confounds are z-scored: their mean is put to 0 and their variance to 1 in the time dimension. 
- detrendbool, optional
- Whether to detrend signals or not. 
- high_variance_confoundsbool, default=False
- If True, high variance confounds are computed on provided image with - nilearn.image.high_variance_confoundsand default parameters and regressed out.
- low_passfloatorintor None, default=None
- Low cutoff frequency in Hertz. If specified, signals above this frequency will be filtered out. If None, no low-pass filtering will be performed. 
- high_passfloatorintor None, default=None
- High cutoff frequency in Hertz. If specified, signals below this frequency will be filtered out. 
- t_rfloatorintor None, default=None
- Repetition time, in seconds (sampling period). Set to None if not provided. 
- memoryNone, instance of joblib.Memory,str, orpathlib.Path
- Used to cache the masking process. By default, no caching is done. If a - stris given, it is the path to the caching directory.
- memory_levelint, default=1
- Rough estimator of the amount of memory used by caching. Higher value means more memory for caching. Zero means no caching. 
- verboseint, default=0
- Verbosity level (0 means no message). 
- reportsbool, default=True
- If set to True, data is saved in order to produce a report. 
- cmapmatplotlib.colors.Colormap, orstr, optional
- The colormap to use. Either a string which is a name of a matplotlib colormap, or a matplotlib colormap object. default=”inferno” Only relevant for the report figures. 
- clean_argsdictor None, default=None
- Keyword arguments to be passed to - cleancalled within the masker. Within- clean, kwargs prefixed with- 'butterworth__'will be passed to the Butterworth filter.
 
- mask_img
- Attributes:
- clean_args_dict
- Keyword arguments to be passed to - cleancalled within the masker. Within- clean, kwargs prefixed with- 'butterworth__'will be passed to the Butterworth filter.
- mask_img_A 1D binary SurfaceImage
- The mask of the data, or the one computed from - imgspassed to fit. If a- mask_imgis passed at masker construction, then- mask_img_is the resulting binarized version of it where each vertex is- Trueif all values across samples (for example across timepoints) is finite value different from 0.
- memory_joblib memory cache
- n_elements_intor None
- number of vertices included in mask 
 
- clean_args_
 - __init__(mask_img=None, smoothing_fwhm=None, standardize=False, standardize_confounds=True, detrend=False, high_variance_confounds=False, low_pass=None, high_pass=None, t_r=None, memory=None, memory_level=1, verbose=0, reports=True, cmap='inferno', clean_args=None)[source]¶
 - fit(imgs=None, y=None)[source]¶
- Prepare signal extraction from regions. - Parameters:
- imgsSurfaceImageorlistofSurfaceImageortupleofSurfaceImageor None, default = None
- Mesh and data for both hemispheres. 
- yNone
- This parameter is unused. It is solely included for scikit-learn compatibility. 
 
- imgs
- Returns:
- SurfaceMasker object
 
 
 - fit_transform(imgs, y=None, confounds=None, sample_mask=None)[source]¶
- Prepare and perform signal extraction from regions. - Parameters:
- imgsSurfaceImageobject orlistofSurfaceImageortupleofSurfaceImage
- Mesh and data for both hemispheres. The data for each hemisphere is of shape (n_vertices_per_hemisphere, n_timepoints). 
- yNone
- This parameter is unused. It is solely included for scikit-learn compatibility. 
- confoundsnumpy.ndarray,str,pathlib.Path,pandas.DataFrameorlistof confounds timeseries, default=None
- This parameter is passed to - nilearn.signal.clean. Please see the related documentation for details. shape: (number of scans, number of confounds)
- sample_maskAny type compatible with numpy-array indexing, default=None
- shape = (total number of scans - number of scans removed)for explicit index (for example,- sample_mask=np.asarray([1, 2, 4])), or- shape = (number of scans)for binary mask (for example,- sample_mask=np.asarray([False, True, True, False, True])). Masks the images along the last dimension to perform scrubbing: for example to remove volumes with high motion and/or non-steady-state volumes. This parameter is passed to- nilearn.signal.clean.
 
- imgs
- Returns:
- signalsnumpy.ndarray
- Signal for each element. Output shape for : - 1D images: (number of elements,) array 
- 2D images: (number of scans, number of elements) array 
 
 
- signals
 
 - generate_report()[source]¶
- Generate a report for the SurfaceMasker. - Returns:
- list(None) or HTMLReport
 
 
 - get_metadata_routing()¶
- Get metadata routing of this object. - Please check User Guide on how the routing mechanism works. - Returns:
- routingMetadataRequest
- A - MetadataRequestencapsulating routing information.
 
 
 - get_params(deep=True)¶
- Get parameters for this estimator. - Parameters:
- deepbool, default=True
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- Returns:
- paramsdict
- Parameter names mapped to their values. 
 
 
 - inverse_transform(signals)[source]¶
- Transform extracted signal back to surface object. - Parameters:
- signals1D/2D numpy.ndarray
- Extracted signal. If a 1D array is provided, then the shape should be (number of elements,). If a 2D array is provided, then the shape should be (number of scans, number of elements). 
 
- signals1D/2D 
- Returns:
- imgSurfaceImage
- Signal for each vertex projected on the mesh. Output shape for : - 1D array : 1D - SurfaceImagewill be returned.
- 2D array : 2D - SurfaceImagewill be returned.
 
 
- img
 
 - set_fit_request(*, imgs='$UNCHANGED$')¶
- Request metadata passed to the - fitmethod.- Note that this method is only relevant if - enable_metadata_routing=True(see- sklearn.set_config). Please see User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- fitif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- fit.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Note - This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a - Pipeline. Otherwise it has no effect.- Parameters:
- imgsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - imgsparameter in- fit.
 
- Returns:
- selfobject
- The updated object. 
 
 
 - set_inverse_transform_request(*, signals='$UNCHANGED$')¶
- Request metadata passed to the - inverse_transformmethod.- Note that this method is only relevant if - enable_metadata_routing=True(see- sklearn.set_config). Please see User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- inverse_transformif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- inverse_transform.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Note - This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a - Pipeline. Otherwise it has no effect.- Parameters:
- signalsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - signalsparameter in- inverse_transform.
 
- Returns:
- selfobject
- The updated object. 
 
 
 - set_params(**params)¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as - Pipeline). The latter have parameters of the form- <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
- Estimator parameters. 
 
- Returns:
- selfestimator instance
- Estimator instance. 
 
 
 - set_transform_request(*, confounds='$UNCHANGED$', imgs='$UNCHANGED$', sample_mask='$UNCHANGED$')¶
- Request metadata passed to the - transformmethod.- Note that this method is only relevant if - enable_metadata_routing=True(see- sklearn.set_config). Please see User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- transformif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- transform.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Note - This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a - Pipeline. Otherwise it has no effect.- Parameters:
- confoundsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - confoundsparameter in- transform.
- imgsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - imgsparameter in- transform.
- sample_maskstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - sample_maskparameter in- transform.
 
- Returns:
- selfobject
- The updated object. 
 
 
 - transform(imgs, confounds=None, sample_mask=None)[source]¶
- Apply mask, spatial and temporal preprocessing. - Parameters:
- imgsSurfaceImageobject or iterable ofSurfaceImage
- Images to process. 
- confoundsnumpy.ndarray,str,pathlib.Path,pandas.DataFrameorlistof confounds timeseries, default=None
- This parameter is passed to - nilearn.signal.clean. Please see the related documentation for details. shape: (number of scans, number of confounds)
- sample_maskAny type compatible with numpy-array indexing, default=None
- shape = (total number of scans - number of scans removed)for explicit index (for example,- sample_mask=np.asarray([1, 2, 4])), or- shape = (number of scans)for binary mask (for example,- sample_mask=np.asarray([False, True, True, False, True])). Masks the images along the last dimension to perform scrubbing: for example to remove volumes with high motion and/or non-steady-state volumes. This parameter is passed to- nilearn.signal.clean.
 
- imgs
- Returns:
- signalsnumpy.ndarray
- Signal for each element. Output shape for : - 1D images: (number of elements,) array 
- 2D images: (number of scans, number of elements) array 
 
 
- signals
 
 - transform_single_imgs(imgs, confounds=None, sample_mask=None)[source]¶
- Extract signals from fitted surface object. - Parameters:
- imgsimgsSurfaceImageobject or iterable ofSurfaceImage
- Images to process. Mesh and data for both hemispheres/parts. 
- confoundsnumpy.ndarray,str,pathlib.Path,pandas.DataFrameorlistof confounds timeseries, default=None
- This parameter is passed to - nilearn.signal.clean. Please see the related documentation for details. shape: (number of scans, number of confounds)
- sample_maskAny type compatible with numpy-array indexing, default=None
- shape = (total number of scans - number of scans removed)for explicit index (for example,- sample_mask=np.asarray([1, 2, 4])), or- shape = (number of scans)for binary mask (for example,- sample_mask=np.asarray([False, True, True, False, True])). Masks the images along the last dimension to perform scrubbing: for example to remove volumes with high motion and/or non-steady-state volumes. This parameter is passed to- nilearn.signal.clean.
 
- imgsimgs
- Returns:
- signalsnumpy.ndarray
- Signal for each element. Output shape for : - 1D images: (number of elements,) array 
- 2D images: (number of scans, number of elements) array 
 
 
- signals
 
 
