Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.datasets.fetch_coords_seitzman_2018#
- nilearn.datasets.fetch_coords_seitzman_2018(ordered_regions=True, legacy_format=True)[source]#
Load the Seitzman et al. 300 ROIs.
These ROIs cover cortical, subcortical and cerebellar regions and are assigned to one of 13 networks (Auditory, CinguloOpercular, DefaultMode, DorsalAttention, FrontoParietal, MedialTemporalLobe, ParietoMedial, Reward, Salience, SomatomotorDorsal, SomatomotorLateral, VentralAttention, Visual) and have a regional label (cortexL, cortexR, cerebellum, thalamus, hippocampus, basalGanglia, amygdala, cortexMid).
See Seitzman et al.[1].
New in version 0.5.1.
- Parameters:
- Returns:
- data
sklearn.utils.Bunch
Dictionary-like object, contains:
‘rois’:
numpy.recarray
, rec array with the coordinates of the 300 ROIs in MNI space. Iflegacy_format
is set toFalse
, this is apandas.DataFrame
.‘radius’:
numpy.ndarray
ofint
, radius of each ROI in mm.‘networks’:
numpy.ndarray
ofstr
, names of the corresponding network for each ROI.‘regions’:
numpy.ndarray
ofstr
, names of the regions.‘description’:
str
, description of the dataset.
- data
References