9.2.19. More plotting tools from nilearn

In this example, we demonstrate how to use plotting options from nilearn essential in visualizing brain image analysis results.

We emphasize the use of parameters such as display_mode and cut_coords with plotting function nilearn.plotting.plot_stat_map. Also, we show how to use various features such as add_edges, add_contours, add_markers essential in visualizing regions of interest images or mask images overlaying on subject specific anatomical/EPI image. The display features shown here are inherited from the nilearn.plotting.displays.OrthoSlicer class.

The parameter display_mode is used to draw brain slices along given specific directions, where directions can be one of ‘ortho’, ‘tiled’,’x’, ‘y’, ‘z’, ‘yx’, ‘xz’, ‘yz’. whereas parameter cut_coords is used to specify a limited number of slices to visualize along given specific slice direction. The parameter cut_coords can also be used to draw the specific cuts in the slices by giving its particular coordinates in MNI space accordingly with particular slice direction. This helps us point to the activation specific location of the brain slices.

See Plotting brain images for more details.

9.2.19.1. First, we retrieve data from nilearn provided (general-purpose) datasets

from nilearn import datasets

# haxby dataset to have anatomical image, EPI images and masks
haxby_dataset = datasets.fetch_haxby()
haxby_anat_filename = haxby_dataset.anat[0]
haxby_mask_filename = haxby_dataset.mask_vt[0]
haxby_func_filename = haxby_dataset.func[0]

# localizer dataset to have contrast maps
motor_images = datasets.fetch_neurovault_motor_task()
stat_img = motor_images.images[0]

Now, we show from here how to visualize the retrieved datasets using plotting tools from nilearn.

from nilearn import plotting

9.2.19.2. Visualizing in - ‘sagittal’, ‘coronal’ and ‘axial’ with given coordinates

The first argument is a path to the filename of a contrast map, optional argument display_mode is given as string ‘ortho’ to visualize the map in three specific directions xyz and the optional cut_coords argument, is here a list of integers denotes coordinates of each slice in the order [x, y, z]. By default the colorbar argument is set to True in plot_stat_map.

plotting.plot_stat_map(stat_img, display_mode='ortho',
                       cut_coords=[36, -27, 60],
                       title="display_mode='ortho', cut_coords=[36, -27, 60]")
plot demo more plotting

Out:

<nilearn.plotting.displays.OrthoSlicer object at 0x7fc023b35cd0>

9.2.19.3. Visualizing in - single view ‘axial’ with number of cuts=5

In this type of visualization, the display_mode argument is given as string ‘z’ for axial direction and cut_coords as integer 5 without a list implies that number of cuts in the slices should be maximum of 5. The coordinates to cut the slices are selected automatically

plotting.plot_stat_map(stat_img, display_mode='z', cut_coords=5,
                       title="display_mode='z', cut_coords=5")
plot demo more plotting

Out:

<nilearn.plotting.displays.ZSlicer object at 0x7fc01d24a910>

9.2.19.4. Visualizing in - single view ‘sagittal’ with only two slices

In this type, display_mode should be given as string ‘x’ for sagittal view and coordinates should be given as integers in a list

plotting.plot_stat_map(stat_img, display_mode='x',
                       cut_coords=[-36, 36],
                       title="display_mode='x', cut_coords=[-36, 36]")
plot demo more plotting

Out:

<nilearn.plotting.displays.XSlicer object at 0x7fc0252e80a0>

9.2.19.5. Visualizing in - ‘coronal’ view with single cut

For coronal view, display_mode is given as string ‘y’ and cut_coords as integer 1 not as a list for single cut. The coordinates are selected automatically

plotting.plot_stat_map(stat_img, display_mode='y', cut_coords=1,
                       title="display_mode='y', cut_coords=1")
plot demo more plotting

Out:

<nilearn.plotting.displays.YSlicer object at 0x7fc0188d48e0>

9.2.19.6. Visualizing without a colorbar on the right side

The argument colorbar should be given as False to show plots without a colorbar on the right side.

plotting.plot_stat_map(stat_img, display_mode='z',
                       cut_coords=1, colorbar=False,
                       title="display_mode='z', cut_coords=1, colorbar=False")
plot demo more plotting

Out:

<nilearn.plotting.displays.ZSlicer object at 0x7fc01e391160>

9.2.19.7. Visualize in - two views ‘sagittal’ and ‘axial’ with given coordinates

argument display_mode=’xz’ where ‘x’ for sagittal and ‘z’ for axial view. argument cut_coords should match with input number of views therefore two integers should be given in a list to select the slices to be displayed

plotting.plot_stat_map(stat_img, display_mode='xz',
                       cut_coords=[36, 60],
                       title="display_mode='xz', cut_coords=[36, 60]")
plot demo more plotting

Out:

<nilearn.plotting.displays.XZSlicer object at 0x7fc01c91e7c0>

9.2.19.8. Changing the views to ‘coronal’, ‘sagittal’ views with coordinates

display_mode=’yx’ for coronal and sagittal view and coordinates will be assigned in the order of direction as [x, y, z]

plotting.plot_stat_map(stat_img, display_mode='yx',
                       cut_coords=[-27, 36],
                       title="display_mode='yx', cut_coords=[-27, 36]")
plot demo more plotting

Out:

<nilearn.plotting.displays.YXSlicer object at 0x7fc023b351f0>

9.2.19.9. Now, views are changed to ‘coronal’ and ‘axial’ views with coordinates

plotting.plot_stat_map(stat_img, display_mode='yz',
                       cut_coords=[-27, 60],
                       title="display_mode='yz', cut_coords=[-27, 60]")
plot demo more plotting

Out:

<nilearn.plotting.displays.YZSlicer object at 0x7fc0174b2f10>

9.2.19.10. Visualizing three views in 2x2 fashion

display_mode=’tiled’ for sagittal, coronal and axial view

plotting.plot_stat_map(stat_img, display_mode='tiled',
                       cut_coords=[36, -27, 60],
                       title="display_mode='tiled'")
plot demo more plotting

Out:

<nilearn.plotting.displays.TiledSlicer object at 0x7fc018c6ef70>

9.2.19.11. Visualizing three views along multiple rows and columns

display_mode=’mosaic’ for sagittal, coronal and axial view with default option i.e. cut_coords=None

plotting.plot_stat_map(stat_img, display_mode='mosaic',
                       title="display_mode='mosaic' default cut_coords")
plot demo more plotting

Out:

<nilearn.plotting.displays.MosaicSlicer object at 0x7fc019ffa790>

9.2.19.12. Now, changing the number of slices along columns

display_mode=’mosaic’ for sagittal, coronal and axial view with number of slices specified as integer i.e. cut_coords=3

plotting.plot_stat_map(stat_img, display_mode='mosaic',
                       cut_coords=3,
                       title="display_mode='mosaic' with cut_coords=3")
plot demo more plotting

Out:

<nilearn.plotting.displays.MosaicSlicer object at 0x7fc01a5990d0>

9.2.19.13. Now, another way of limiting the number of slices along rows and columns

display_mode=’mosaic’ for sagittal, coronal and axial view with number of slices specified as tuple of length 3

plotting.plot_stat_map(stat_img, display_mode='mosaic',
                       cut_coords=(5, 4, 10),
                       title="display_mode='mosaic' with cut_coords as tuple")
plot demo more plotting

Out:

<nilearn.plotting.displays.MosaicSlicer object at 0x7fc025237670>

9.2.19.14. Demonstrating various display features

In second part, we switch to demonstrating various features add_* from nilearn where each specific feature will be helpful in projecting brain imaging results for further interpretation.

# Import image processing tool for basic processing of functional brain image
from nilearn import image

# Compute voxel-wise mean functional image across time dimension. Now we have
# functional image in 3D assigned in mean_haxby_img
mean_haxby_img = image.mean_img(haxby_func_filename)

9.2.19.15. Showing how to use add_edges

Now let us see how to use add_edges, method useful for checking coregistration by overlaying anatomical image as edges (red) on top of mean functional image (background), both being of same subject.

# First, we call the `plot_anat` plotting function, with a background image
# as first argument, in this case the mean fMRI image.

display = plotting.plot_anat(mean_haxby_img, title="add_edges")

# We are now able to use add_edges method inherited in plotting object named as
# display. First argument - anatomical image  and by default edges will be
# displayed as red 'r', to choose different colors green 'g' and  blue 'b'.
display.add_edges(haxby_anat_filename)
plot demo more plotting

9.2.19.16. How to use add_contours

Plotting outline of the mask (red) on top of the mean EPI image with add_contours. This method is useful for region specific interpretation of brain images

# As seen before, we call the `plot_anat` function with a background image
# as first argument, in this case again the mean fMRI image and argument
# `cut_coords` as list for manual cut with coordinates pointing at masked
# brain regions
display = plotting.plot_anat(mean_haxby_img, title="add_contours",
                             cut_coords=[-34, -39, -9])
# Now use `add_contours` in display object with the path to a mask image from
# the Haxby dataset as first argument and argument `levels` given as list
# of values to select particular level in the contour to display and argument
# `colors` specified as red 'r' to see edges as red in color.
# See help on matplotlib.pyplot.contour to use more options with this method
display.add_contours(haxby_mask_filename, levels=[0.5], colors='r')
plot demo more plotting

Plotting outline of the mask (blue) with color fillings using same method add_contours.

display = plotting.plot_anat(mean_haxby_img,
                             title="add_contours with filled=True",
                             cut_coords=[-34, -39, -9])

# By default, no color fillings will be shown using `add_contours`. To see
# contours with color fillings use argument filled=True. contour colors are
# changed to blue 'b' with alpha=0.7 sets the transparency of color fillings.
# See help on matplotlib.pyplot.contourf to use more options given that filled
# should be True
display.add_contours(haxby_mask_filename, filled=True, alpha=0.7,
                     levels=[0.5], colors='b')
plot demo more plotting

Out:

/home/nicolas/GitRepos/nilearn-fork/nilearn/plotting/displays.py:101: UserWarning: No contour levels were found within the data range.
  im = getattr(ax, type)(data_2d.copy(),

9.2.19.17. Plotting seeds using add_markers

Plotting seed regions of interest as spheres using new feature add_markers with MNI coordinates of interest.

display = plotting.plot_anat(mean_haxby_img, title="add_markers",
                             cut_coords=[-34, -39, -9])

# Coordinates of seed regions should be specified in first argument and second
# argument `marker_color` denotes color of the sphere in this case yellow 'y'
# and third argument `marker_size` denotes size of the sphere
coords = [(-34, -39, -9)]
display.add_markers(coords, marker_color='y', marker_size=100)
plot demo more plotting

9.2.19.18. Annotating plots

It is possible to alter the default annotations of plots, using the annotate member function of display objects. For example, we can add a scale bar at the bottom right of each view:

display = plotting.plot_anat(mean_haxby_img,
                             title="adding a scale bar",
                             cut_coords=[-34, -39, -9])
display.annotate(scalebar=True)
plot demo more plotting

Further configuration can be achieved by setting scale_* keyword args. For instance, changing units to mm or a different scale bar size.

display = plotting.plot_anat(mean_haxby_img,
                             title="adding a scale bar",
                             cut_coords=[-34, -39, -9])
display.annotate(scalebar=True, scale_size=25, scale_units='mm')
plot demo more plotting

9.2.19.19. Saving plots to file

Finally, saving the plots to file with two different ways

# Contrast maps plotted with function `plot_stat_map` can be saved using an
# inbuilt parameter output_file as filename + .extension as string. Valid
# extensions are .png, .pdf, .svg
plotting.plot_stat_map(stat_img,
                       title='Using plot_stat_map output_file',
                       output_file='plot_stat_map.png')

Another way of saving plots is using ‘savefig’ option from display object

display = plotting.plot_stat_map(stat_img,
                                 title='Using display savefig')
display.savefig('plot_stat_map_from_display.png')
# In non-interactive settings make sure you close your displays
display.close()

plotting.show()

Total running time of the script: ( 0 minutes 30.303 seconds)

Gallery generated by Sphinx-Gallery