Note
Go to the end to download the full example code. or to run this example in your browser via Binder
Region Extraction using a t-statistical map (3D)¶
This example shows how to extract regions or separate the regions from a statistical map.
We use localizer t-statistic maps from
nilearn.datasets.fetch_neurovault_auditory_computation_task
as an input image.
The idea is to threshold an image to get foreground objects using a
function nilearn.image.threshold_img
and
extract objects using a function
nilearn.regions.connected_regions
.
Fetching t-statistic image of localizer contrasts by loading from datasets utilities
from nilearn import datasets
localizer = datasets.fetch_neurovault_auditory_computation_task()
tmap_filename = localizer.images[0]
[get_dataset_dir] Dataset found in /home/remi/nilearn_data/neurovault
Threshold the t-statistic image by importing threshold function
from nilearn.image import threshold_img
# Two types of strategies can be used from this threshold function
# Type 1: strategy used will be based on scoreatpercentile
threshold_percentile_img = threshold_img(
tmap_filename, threshold="97%", copy=False, copy_header=True
)
# Type 2: threshold strategy used will be based on image intensity
# Here, threshold value should be within the limits i.e. less than max value.
threshold_value_img = threshold_img(
tmap_filename, threshold=3.0, copy=False, copy_header=True
)
Visualization Showing thresholding results by importing plotting modules and its utilities
from nilearn import plotting
# Showing percentile threshold image
plotting.plot_stat_map(
threshold_percentile_img,
display_mode="z",
cut_coords=5,
title="Threshold image with string percentile",
colorbar=False,
)
# Showing intensity threshold image
plotting.plot_stat_map(
threshold_value_img,
display_mode="z",
cut_coords=5,
title="Threshold image with intensity value",
colorbar=False,
)
<nilearn.plotting.displays._slicers.ZSlicer object at 0x740cf5eade20>
Extracting the regions by importing connected regions function
from nilearn.regions import connected_regions
regions_percentile_img, index = connected_regions(
threshold_percentile_img, min_region_size=1500
)
regions_value_img, index = connected_regions(
threshold_value_img, min_region_size=1500
)
Visualizing region extraction results
images = [regions_percentile_img, regions_value_img]
for image, strategy in zip(images, ["percentile", "image intensity"]):
title = (
f"ROIs using {strategy} thresholding. "
"Each ROI in same color is an extracted region"
)
plotting.plot_prob_atlas(
image,
bg_img=tmap_filename,
view_type="contours",
display_mode="z",
cut_coords=5,
title=title,
)
plotting.show()
/home/remi/github/nilearn/nilearn_doc_build/.tox/doc/lib/python3.9/site-packages/nilearn/plotting/displays/_axes.py:74: UserWarning:
No contour levels were found within the data range.
Total running time of the script: (0 minutes 7.235 seconds)
Estimated memory usage: 146 MB