NeuroImaging volumes visualization#

Simple example to show Nifti data visualization.

Fetch data#

from nilearn import datasets

# By default 2nd subject will be fetched
haxby_dataset = datasets.fetch_haxby()

# print basic information on the dataset
    f"First anatomical nifti image (3D) located is at: {haxby_dataset.anat[0]}"
    f"First functional nifti image (4D) is located at: {haxby_dataset.func[0]}"
First anatomical nifti image (3D) located is at: /home/himanshu/nilearn_data/haxby2001/subj2/anat.nii.gz
First functional nifti image (4D) is located at: /home/himanshu/nilearn_data/haxby2001/subj2/bold.nii.gz


from nilearn.image.image import mean_img

# Compute the mean EPI: we do the mean along the axis 3, which is time
func_filename = haxby_dataset.func[0]
mean_haxby = mean_img(func_filename)

from nilearn.plotting import plot_epi, show

plot_epi(mean_haxby, colorbar=True, cbar_tick_format="%i")
plot visualization
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x73326bf7fc20>

Extracting a brain mask#

Simple computation of a mask from the fMRI data

from nilearn.masking import compute_epi_mask

mask_img = compute_epi_mask(func_filename)

# Visualize it as an ROI
from nilearn.plotting import plot_roi

plot_roi(mask_img, mean_haxby)
plot visualization
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x733251b024e0>

Applying the mask to extract the corresponding time series#

from nilearn.masking import apply_mask

masked_data = apply_mask(func_filename, mask_img)

# masked_data shape is (timepoints, voxels). We can plot the first 150
# timepoints from two voxels

# And now plot a few of these
import matplotlib.pyplot as plt

plt.figure(figsize=(7, 5))
plt.plot(masked_data[:150, :2])
plt.xlabel("Time [TRs]", fontsize=16)
plt.ylabel("Intensity", fontsize=16)
plt.xlim(0, 150)
plt.subplots_adjust(bottom=0.12, top=0.95, right=0.95, left=0.12)

plot visualization

Total running time of the script: (0 minutes 16.719 seconds)

Estimated memory usage: 1360 MB

Gallery generated by Sphinx-Gallery