9.4.7. Group Sparse inverse covariance for multi-subject connectome

This example shows how to estimate a connectome on a group of subjects using the group sparse inverse covariance estimate.

import numpy as np

from nilearn import plotting

n_subjects = 4  # subjects to consider for group-sparse covariance (max: 40)


def plot_matrices(cov, prec, title, labels):
    """Plot covariance and precision matrices, for a given processing. """

    prec = prec.copy()  # avoid side effects

    # Put zeros on the diagonal, for graph clarity.
    size = prec.shape[0]
    prec[list(range(size)), list(range(size))] = 0
    span = max(abs(prec.min()), abs(prec.max()))

    # Display covariance matrix
    plotting.plot_matrix(cov, cmap=plotting.cm.bwr,
                         vmin=-1, vmax=1, title="%s / covariance" % title,
                         labels=labels)
    # Display precision matrix
    plotting.plot_matrix(prec, cmap=plotting.cm.bwr,
                         vmin=-span, vmax=span, title="%s / precision" % title,
                         labels=labels)

9.4.7.1. Fetching datasets

from nilearn import datasets
msdl_atlas_dataset = datasets.fetch_atlas_msdl()
rest_dataset = datasets.fetch_development_fmri(n_subjects=n_subjects)

# print basic information on the dataset
print('First subject functional nifti image (4D) is at: %s' %
      rest_dataset.func[0])  # 4D data

Out:

/home/nicolas/anaconda3/envs/nilearn/lib/python3.8/site-packages/numpy/lib/npyio.py:2405: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default.
  output = genfromtxt(fname, **kwargs)
First subject functional nifti image (4D) is at: /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz

9.4.7.2. Extracting region signals

from nilearn import input_data

# A "memory" to avoid recomputation
from joblib import Memory
mem = Memory('nilearn_cache')

masker = input_data.NiftiMapsMasker(
    msdl_atlas_dataset.maps, resampling_target="maps", detrend=True,
    high_variance_confounds=True, low_pass=None, high_pass=0.01,
    t_r=2, standardize=True, memory='nilearn_cache', memory_level=1,
    verbose=2)
masker.fit()

subject_time_series = []
func_filenames = rest_dataset.func
confound_filenames = rest_dataset.confounds
for func_filename, confound_filename in zip(func_filenames,
                                            confound_filenames):
    print("Processing file %s" % func_filename)

    region_ts = masker.transform(func_filename,
                                 confounds=confound_filename)
    subject_time_series.append(region_ts)

Out:

[NiftiMapsMasker.fit] loading regions from /home/nicolas/nilearn_data/msdl_atlas/MSDL_rois/msdl_rois.nii
/home/nicolas/GitRepos/nilearn-fork/nilearn/image/image.py:1106: FutureWarning: The parameter "sessions" will be removed in 0.9.0 release of Nilearn. Please use the parameter "runs" instead.
  data = signal.clean(
Processing file /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
________________________________________________________________________________
[Memory] Calling nilearn.image.image.high_variance_confounds...
high_variance_confounds('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz')
__________________________________________high_variance_confounds - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.base_masker.filter_and_extract...
filter_and_extract('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz',
<nilearn.input_data.nifti_maps_masker._ExtractionFunctor object at 0x7fc02373f8e0>,
{ 'allow_overlap': True,
  'detrend': True,
  'dtype': None,
  'high_pass': 0.01,
  'high_variance_confounds': True,
  'low_pass': None,
  'maps_img': '/home/nicolas/nilearn_data/msdl_atlas/MSDL_rois/msdl_rois.nii',
  'mask_img': None,
  'smoothing_fwhm': None,
  'standardize': True,
  'standardize_confounds': True,
  't_r': 2,
  'target_affine': array([[   4.,    0.,    0.,  -78.],
       [   0.,    4.,    0., -111.],
       [   0.,    0.,    4.,  -51.],
       [   0.,    0.,    0.,    1.]]),
  'target_shape': (40, 48, 35)}, confounds=[ array([[-0.174325, ..., -0.048779],
       ...,
       [-0.044073, ...,  0.155444]]),
  '/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_desc-reducedConfounds_regressors.tsv'], sample_mask=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=2)
[NiftiMapsMasker.transform_single_imgs] Loading data from /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
[NiftiMapsMasker.transform_single_imgs] Resampling images
[NiftiMapsMasker.transform_single_imgs] Extracting region signals
[NiftiMapsMasker.transform_single_imgs] Cleaning extracted signals
_______________________________________________filter_and_extract - 5.2s, 0.1min
Processing file /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar001_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
________________________________________________________________________________
[Memory] Calling nilearn.image.image.high_variance_confounds...
high_variance_confounds('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar001_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz')
__________________________________________high_variance_confounds - 0.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.base_masker.filter_and_extract...
filter_and_extract('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar001_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz',
<nilearn.input_data.nifti_maps_masker._ExtractionFunctor object at 0x7fc0249aea60>,
{ 'allow_overlap': True,
  'detrend': True,
  'dtype': None,
  'high_pass': 0.01,
  'high_variance_confounds': True,
  'low_pass': None,
  'maps_img': '/home/nicolas/nilearn_data/msdl_atlas/MSDL_rois/msdl_rois.nii',
  'mask_img': None,
  'smoothing_fwhm': None,
  'standardize': True,
  'standardize_confounds': True,
  't_r': 2,
  'target_affine': array([[   4.,    0.,    0.,  -78.],
       [   0.,    4.,    0., -111.],
       [   0.,    0.,    4.,  -51.],
       [   0.,    0.,    0.,    1.]]),
  'target_shape': (40, 48, 35)}, confounds=[ array([[-0.151677, ..., -0.057023],
       ...,
       [-0.206928, ...,  0.102714]]),
  '/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar001_task-pixar_desc-reducedConfounds_regressors.tsv'], sample_mask=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=2)
[NiftiMapsMasker.transform_single_imgs] Loading data from /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar001_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
[NiftiMapsMasker.transform_single_imgs] Resampling images
[NiftiMapsMasker.transform_single_imgs] Extracting region signals
[NiftiMapsMasker.transform_single_imgs] Cleaning extracted signals
_______________________________________________filter_and_extract - 5.1s, 0.1min
Processing file /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar002_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
________________________________________________________________________________
[Memory] Calling nilearn.image.image.high_variance_confounds...
high_variance_confounds('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar002_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz')
__________________________________________high_variance_confounds - 0.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.base_masker.filter_and_extract...
filter_and_extract('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar002_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz',
<nilearn.input_data.nifti_maps_masker._ExtractionFunctor object at 0x7fc0249aea60>,
{ 'allow_overlap': True,
  'detrend': True,
  'dtype': None,
  'high_pass': 0.01,
  'high_variance_confounds': True,
  'low_pass': None,
  'maps_img': '/home/nicolas/nilearn_data/msdl_atlas/MSDL_rois/msdl_rois.nii',
  'mask_img': None,
  'smoothing_fwhm': None,
  'standardize': True,
  'standardize_confounds': True,
  't_r': 2,
  'target_affine': array([[   4.,    0.,    0.,  -78.],
       [   0.,    4.,    0., -111.],
       [   0.,    0.,    4.,  -51.],
       [   0.,    0.,    0.,    1.]]),
  'target_shape': (40, 48, 35)}, confounds=[ array([[ 0.127944, ..., -0.087084],
       ...,
       [-0.015679, ..., -0.02587 ]]),
  '/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar002_task-pixar_desc-reducedConfounds_regressors.tsv'], sample_mask=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=2)
[NiftiMapsMasker.transform_single_imgs] Loading data from /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar002_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
[NiftiMapsMasker.transform_single_imgs] Resampling images
[NiftiMapsMasker.transform_single_imgs] Extracting region signals
[NiftiMapsMasker.transform_single_imgs] Cleaning extracted signals
_______________________________________________filter_and_extract - 5.2s, 0.1min
Processing file /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar003_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
________________________________________________________________________________
[Memory] Calling nilearn.image.image.high_variance_confounds...
high_variance_confounds('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar003_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz')
__________________________________________high_variance_confounds - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.base_masker.filter_and_extract...
filter_and_extract('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar003_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz',
<nilearn.input_data.nifti_maps_masker._ExtractionFunctor object at 0x7fc0249aea60>,
{ 'allow_overlap': True,
  'detrend': True,
  'dtype': None,
  'high_pass': 0.01,
  'high_variance_confounds': True,
  'low_pass': None,
  'maps_img': '/home/nicolas/nilearn_data/msdl_atlas/MSDL_rois/msdl_rois.nii',
  'mask_img': None,
  'smoothing_fwhm': None,
  'standardize': True,
  'standardize_confounds': True,
  't_r': 2,
  'target_affine': array([[   4.,    0.,    0.,  -78.],
       [   0.,    4.,    0., -111.],
       [   0.,    0.,    4.,  -51.],
       [   0.,    0.,    0.,    1.]]),
  'target_shape': (40, 48, 35)}, confounds=[ array([[-0.089762, ..., -0.062316],
       ...,
       [-0.065223, ..., -0.022868]]),
  '/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar003_task-pixar_desc-reducedConfounds_regressors.tsv'], sample_mask=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=2)
[NiftiMapsMasker.transform_single_imgs] Loading data from /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar003_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
[NiftiMapsMasker.transform_single_imgs] Resampling images
[NiftiMapsMasker.transform_single_imgs] Extracting region signals
[NiftiMapsMasker.transform_single_imgs] Cleaning extracted signals
_______________________________________________filter_and_extract - 5.4s, 0.1min

9.4.7.3. Computing group-sparse precision matrices

from nilearn.connectome import GroupSparseCovarianceCV
gsc = GroupSparseCovarianceCV(verbose=2)
gsc.fit(subject_time_series)

try:
    from sklearn.covariance import GraphicalLassoCV
except ImportError:
    # for Scitkit-Learn < v0.20.0
    from sklearn.covariance import GraphLassoCV as GraphicalLassoCV

gl = GraphicalLassoCV(verbose=2)
gl.fit(np.concatenate(subject_time_series))

Out:

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 2
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 7
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    2.9s remaining:    0.0s
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 2
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 2
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 1
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 2
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 6
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:   14.6s finished
[GroupSparseCovarianceCV.fit] [GroupSparseCovarianceCV] Done refinement  1 out of 4
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 3
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 6
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 1
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    3.1s remaining:    0.0s
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 4
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 3
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 3
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 6
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:   24.2s finished
[GroupSparseCovarianceCV.fit] [GroupSparseCovarianceCV] Done refinement  2 out of 4
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 5
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 1
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 1
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 1
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    2.8s remaining:    0.0s
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 9
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 10
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 5
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:   26.3s finished
[GroupSparseCovarianceCV.fit] [GroupSparseCovarianceCV] Done refinement  3 out of 4
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 6
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 1
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 1
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    3.5s remaining:    0.0s
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 10
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 11
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 5
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:   21.1s finished
[GroupSparseCovarianceCV.fit] [GroupSparseCovarianceCV] Done refinement  4 out of 4
[GroupSparseCovarianceCV.fit] Final optimization
[GroupSparseCovarianceCV.fit] tolerance reached at iteration number 19: 8.789e-04
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
....[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.1s remaining:    0.0s
................[Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:    1.7s finished
[GraphicalLassoCV] Done refinement  1 out of 4:   1s
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
....[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.4s remaining:    0.0s
................[Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:    1.3s finished
[GraphicalLassoCV] Done refinement  2 out of 4:   3s
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
....[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.6s remaining:    0.0s
................[Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:    2.2s finished
[GraphicalLassoCV] Done refinement  3 out of 4:   5s
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
....[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.2s remaining:    0.0s
................[Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:    1.4s finished
[GraphicalLassoCV] Done refinement  4 out of 4:   6s
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:    0.0s finished
[graphical_lasso] Iteration   0, cost  1.68e+02, dual gap 1.123e+00
[graphical_lasso] Iteration   1, cost  1.68e+02, dual gap -1.664e-03
[graphical_lasso] Iteration   2, cost  1.68e+02, dual gap 1.158e-04
[graphical_lasso] Iteration   3, cost  1.68e+02, dual gap 1.389e-04
[graphical_lasso] Iteration   4, cost  1.68e+02, dual gap 1.530e-04
[graphical_lasso] Iteration   5, cost  1.68e+02, dual gap 1.318e-04
[graphical_lasso] Iteration   6, cost  1.68e+02, dual gap 6.844e-05

GraphicalLassoCV(verbose=2)

9.4.7.4. Displaying results

atlas_img = msdl_atlas_dataset.maps
atlas_region_coords = plotting.find_probabilistic_atlas_cut_coords(atlas_img)
labels = msdl_atlas_dataset.labels

plotting.plot_connectome(gl.covariance_,
                         atlas_region_coords, edge_threshold='90%',
                         title="Covariance",
                         display_mode="lzr")
plotting.plot_connectome(-gl.precision_, atlas_region_coords,
                         edge_threshold='90%',
                         title="Sparse inverse covariance (GraphicalLasso)",
                         display_mode="lzr",
                         edge_vmax=.5, edge_vmin=-.5)
plot_matrices(gl.covariance_, gl.precision_, "GraphicalLasso", labels)

title = "GroupSparseCovariance"
plotting.plot_connectome(-gsc.precisions_[..., 0],
                         atlas_region_coords, edge_threshold='90%',
                         title=title,
                         display_mode="lzr",
                         edge_vmax=.5, edge_vmin=-.5)
plot_matrices(gsc.covariances_[..., 0],
              gsc.precisions_[..., 0], title, labels)

plotting.show()
  • plot multi subject connectome
  • plot multi subject connectome
  • plot multi subject connectome
  • plot multi subject connectome
  • plot multi subject connectome
  • plot multi subject connectome
  • plot multi subject connectome

Total running time of the script: ( 2 minutes 10.900 seconds)

Gallery generated by Sphinx-Gallery