Decoding of a dataset after GLM fit for signal extraction

Full step-by-step example of fitting a GLM to perform a decoding experiment. In this decoding analysis, we will be doing a one-vs-all classification. We use the data from one subject of the Haxby dataset.

More specifically:

  1. Download the Haxby dataset.

  2. Extract the information to generate a glm representing the blocks of stimuli.

  3. Analyze the decoding performance using a classifier.

Fetch example Haxby dataset

We download the Haxby dataset This is a study of visual object category representation

# By default 2nd subject will be fetched
import numpy as np
import pandas as pd

from nilearn.datasets import fetch_haxby

haxby_dataset = fetch_haxby()

# repetition has to be known
t_r = 2.5
[fetch_haxby] Dataset found in /home/runner/nilearn_data/haxby2001

Load the behavioral data

# Load target information as string and give a numerical identifier to each
behavioral = pd.read_csv(haxby_dataset.session_target[0], sep=" ")
conditions = behavioral["labels"].to_numpy()

# Record these as an array of runs
runs = behavioral["chunks"].to_numpy()
unique_runs = behavioral["chunks"].unique()

# fMRI data: a unique file for each run
func_filename = haxby_dataset.func[0]

Build a proper event structure for each run

events = {}
# events will take the form of a dictionary of Dataframes, one per run
for run in unique_runs:
    # get the condition label per run
    conditions_run = conditions[runs == run]
    # get the number of scans per run, then the corresponding
    # vector of frame times
    n_scans = len(conditions_run)
    frame_times = t_r * np.arange(n_scans)
    # each event last the full TR
    duration = t_r * np.ones(n_scans)
    # Define the events object
    events_ = pd.DataFrame(
        {
            "onset": frame_times,
            "trial_type": conditions_run,
            "duration": duration,
        }
    )
    # remove the rest condition and insert into the dictionary
    events[run] = events_[events_.trial_type != "rest"]

Instantiate and run FirstLevelModel

We generate a list of z-maps together with their run and condition index

z_maps = []
conditions_label = []
run_label = []

# Instantiate the glm
from nilearn.glm.first_level import FirstLevelModel

glm = FirstLevelModel(
    t_r=t_r,
    mask_img=haxby_dataset.mask,
    high_pass=0.008,
    smoothing_fwhm=4,
    memory="nilearn_cache",
    memory_level=1,
    verbose=1,
)

Run the GLM on data from each run

events[run].trial_type.unique()
from nilearn.image import index_img

for run in unique_runs:
    # grab the fmri data for that particular run
    fmri_run = index_img(func_filename, runs == run)

    # fit the GLM
    glm.fit(fmri_run, events=events[run])

    # set up contrasts: one per condition
    conditions = events[run].trial_type.unique()
    for condition_ in conditions:
        z_maps.append(glm.compute_contrast(condition_))
        conditions_label.append(condition_)
        run_label.append(run)
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fac89dc0>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resamping mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fac89dc0>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 1 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-0.114769, ..., -2.149296],
       ...,
       [ 2.367151, ...,  0.779998]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.2s, 0.0min
[FirstLevelModel.fit] GLM took 1 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 2 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36d30ea190>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resamping mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36d30ea190>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 1 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 12.660587, ..., -13.536042],
       ...,
       [ -3.254408, ..., -33.842804]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.1s, 0.0min
[FirstLevelModel.fit] GLM took 1 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 2 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36facb0f10>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resamping mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36facb0f10>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 1 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 5.205584, ..., 26.587189],
       ...,
       [-6.836576, ..., 10.676956]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.0s, 0.0min
[FirstLevelModel.fit] GLM took 1 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 2 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fac899a0>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resamping mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fac899a0>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 1 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-2.026206, ...,  5.974948],
       ...,
       [ 2.616334, ...,  0.104535]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.1s, 0.0min
[FirstLevelModel.fit] GLM took 1 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 2 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fa81a2e0>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resamping mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fa81a2e0>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 1 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 53.033577, ..., -55.45955 ],
       ...,
       [-51.57195 , ..., -55.994713]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.0s, 0.0min
[FirstLevelModel.fit] GLM took 1 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 2 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fad4fd60>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resamping mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fad4fd60>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 1 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-27.150482, ...,  -5.81308 ],
       ...,
       [-30.204891, ...,   7.417917]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.0s, 0.0min
[FirstLevelModel.fit] GLM took 1 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 2 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fad33370>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resamping mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fad33370>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 1 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[129.51173 , ..., -15.279282],
       ...,
       [-18.911755, ...,  21.839058]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.0s, 0.0min
[FirstLevelModel.fit] GLM took 1 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 2 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fac2ebe0>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resamping mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fac2ebe0>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 1 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-15.915996, ...,  22.07737 ],
       ...,
       [-16.981215, ...,   3.372383]], dtype=float32),
array([[ 0.      , ...,  1.      ],
       ...,
       [-0.352245, ...,  1.      ]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.0s, 0.0min
[FirstLevelModel.fit] GLM took 1 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 2 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fad4f670>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resamping mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fad4f670>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 1 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-0.292987, ..., 18.392956],
       ...,
       [-3.935719, ...,  0.602484]], dtype=float32),
array([[ 0.      , ...,  1.      ],
       ...,
       [-0.352245, ...,  1.      ]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.0s, 0.0min
[FirstLevelModel.fit] GLM took 1 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 2 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fac2f280>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resamping mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fac2f280>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 1 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-5.223948, ..., -5.959582],
       ...,
       [-7.677519, ..., 16.024363]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.0s, 0.0min
[FirstLevelModel.fit] GLM took 1 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 2 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fac47f10>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resamping mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fac47f10>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 1 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-19.66533 , ...,  -6.299562],
       ...,
       [-24.647343, ...,   2.331865]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.1s, 0.0min
[FirstLevelModel.fit] GLM took 1 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 2 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fabf4550>
[FirstLevelModel.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[FirstLevelModel.fit] Resamping mask
[FirstLevelModel.fit] Finished fit
[FirstLevelModel.fit] Computing run 1 out of 1 runs (go take a coffee, a big
one).
[FirstLevelModel.fit] Performing mask computation.
[FirstLevelModel.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36fabf4550>
[FirstLevelModel.fit] Smoothing images
[FirstLevelModel.fit] Extracting region signals
[FirstLevelModel.fit] Cleaning extracted signals
[FirstLevelModel.fit] Masking took 1 seconds.
[FirstLevelModel.fit] Performing GLM computation.
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-1.095605, ..., 16.449202],
       ...,
       [ 2.59974 , ..., -2.179998]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.0s, 0.0min
[FirstLevelModel.fit] GLM took 1 seconds.
[FirstLevelModel.fit] Computation of 1 runs done in 2 seconds.
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals
[FirstLevelModel.compute_contrast] Computing image from signals

Generating a report

Since we have already computed the FirstLevelModel and have the contrast, we can quickly create a summary report.

from nilearn.image import mean_img

mean_img_ = mean_img(func_filename, copy_header=True)
report = glm.generate_report(
    contrasts=conditions,
    bg_img=mean_img_,
)
[FirstLevelModel.generate_report] Computing image from signals
[FirstLevelModel.generate_report] Computing image from signals
[FirstLevelModel.generate_report] Computing image from signals
[FirstLevelModel.generate_report] Computing image from signals
[FirstLevelModel.generate_report] Computing image from signals
[FirstLevelModel.generate_report] Computing image from signals
[FirstLevelModel.generate_report] Computing image from signals
[FirstLevelModel.generate_report] Computing image from signals
[FirstLevelModel.generate_report] Generating contrast-level figures...
/home/runner/work/nilearn/nilearn/examples/02_decoding/plot_haxby_glm_decoding.py:128: UserWarning: 'threshold=3.09' will not be used with 'height_control='fpr''. 'threshold' is only used when 'height_control=None'. Set 'threshold' to '3.0' to avoid this warning.
  report = glm.generate_report(
/home/runner/work/nilearn/nilearn/examples/02_decoding/plot_haxby_glm_decoding.py:128: UserWarning: 'threshold=3.09' will not be used with 'height_control='fpr''. 'threshold' is only used when 'height_control=None'. Set 'threshold' to '3.0' to avoid this warning.
  report = glm.generate_report(
/home/runner/work/nilearn/nilearn/examples/02_decoding/plot_haxby_glm_decoding.py:128: UserWarning: 'threshold=3.09' will not be used with 'height_control='fpr''. 'threshold' is only used when 'height_control=None'. Set 'threshold' to '3.0' to avoid this warning.
  report = glm.generate_report(
/home/runner/work/nilearn/nilearn/examples/02_decoding/plot_haxby_glm_decoding.py:128: UserWarning: 'threshold=3.09' will not be used with 'height_control='fpr''. 'threshold' is only used when 'height_control=None'. Set 'threshold' to '3.0' to avoid this warning.
  report = glm.generate_report(
/home/runner/work/nilearn/nilearn/examples/02_decoding/plot_haxby_glm_decoding.py:128: UserWarning: 'threshold=3.09' will not be used with 'height_control='fpr''. 'threshold' is only used when 'height_control=None'. Set 'threshold' to '3.0' to avoid this warning.
  report = glm.generate_report(
/home/runner/work/nilearn/nilearn/examples/02_decoding/plot_haxby_glm_decoding.py:128: UserWarning: 'threshold=3.09' will not be used with 'height_control='fpr''. 'threshold' is only used when 'height_control=None'. Set 'threshold' to '3.0' to avoid this warning.
  report = glm.generate_report(
/home/runner/work/nilearn/nilearn/examples/02_decoding/plot_haxby_glm_decoding.py:128: UserWarning: 'threshold=3.09' will not be used with 'height_control='fpr''. 'threshold' is only used when 'height_control=None'. Set 'threshold' to '3.0' to avoid this warning.
  report = glm.generate_report(
/home/runner/work/nilearn/nilearn/examples/02_decoding/plot_haxby_glm_decoding.py:128: UserWarning: 'threshold=3.09' will not be used with 'height_control='fpr''. 'threshold' is only used when 'height_control=None'. Set 'threshold' to '3.0' to avoid this warning.
  report = glm.generate_report(
[FirstLevelModel.generate_report] Generating design matrices figures...
[FirstLevelModel.generate_report] Generating contrast matrices figures...

This report can be viewed in a notebook.

Statistical Report - First Level Model Implement the General Linear Model for single run :term:`fMRI` data.

Description

Data were analyzed using Nilearn (version= 0.12.1; RRID:SCR_001362).

At the subject level, a mass univariate analysis was performed with a linear regression at each voxel of the brain, using generalized least squares with a global ar1 noise model to account for temporal auto-correlation and a cosine drift model (high pass filter=0.008 Hz).

Regressors were entered into run-specific design matrices and onsets were convolved with a glover canonical hemodynamic response function for the following conditions:

  • chair
  • cat
  • bottle
  • face
  • shoe
  • scissors
  • house
  • scrambledpix

Input images were smoothed with gaussian kernel (full-width at half maximum=4 mm).

The following contrasts were computed using a fixed-effect approach across runs :

  • bottle
  • house
  • chair
  • scrambledpix
  • face
  • shoe
  • cat
  • scissors

Model details

Value
Parameter
drift_model cosine
high_pass (Hertz) 0.01
hrf_model glover
noise_model ar1
signal_scaling 0
slice_time_ref 0.0
smoothing_fwhm (mm) 4
standardize False
t_r (seconds) 2.5

Mask

Mask image

The mask includes 39912 voxels (24.4 %) of the image.

Statistical Maps

bottle

Stat map plot for the contrast: bottle
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -54.25 13.12 5.62 6.49 98
2 29.75 -20.62 -24.38 6.49 984
2a 12.25 -20.62 -31.88 4.58
2b 29.75 -28.12 -24.38 4.06
3 26.25 -20.62 -13.12 6.13 344
4 -36.75 -46.88 -46.88 6.11 196
5 43.75 -50.62 -5.62 6.03 1821
5a 47.25 -43.12 -1.88 4.74
5b 40.25 -28.12 -1.88 3.99
6 -1.75 -39.38 13.12 5.95 147
7 33.25 -43.12 -43.12 5.94 2313
7a 26.25 -35.62 -43.12 5.67
7b 8.75 -50.62 -35.62 5.13
8 22.75 -54.38 -39.38 5.91 1033
8a 12.25 -54.38 -43.12 4.67
9 -43.75 28.12 -9.38 5.90 196
10 -12.25 -24.38 -76.88 5.86 196
11 -19.25 -24.38 -43.12 5.80 787
11a -19.25 -31.88 -39.38 5.31
11b -26.25 -39.38 -43.12 3.64
12 26.25 -46.88 -46.88 5.75 147
13 -57.75 -39.38 9.38 5.74 295
14 33.25 5.62 -13.12 5.69 689
14a 26.25 9.38 -16.88 5.46
15 22.75 -46.88 -61.88 5.68 541
16 19.25 -76.88 -13.12 5.60 639
17 22.75 -43.12 9.38 5.57 246
18 -29.75 9.38 -28.12 5.56 246
19 26.25 -69.38 -16.88 5.49 836
19a 36.75 -65.62 -13.12 4.91
19b 33.25 -58.12 -16.88 4.13
20 47.25 -24.38 -13.12 5.47 3445
20a 40.25 -35.62 -24.38 5.23
20b 33.25 -50.62 -20.62 4.80
20c 43.75 -16.88 -13.12 4.67
21 1.75 50.62 -16.88 5.46 295
22 -26.25 -16.88 -24.38 5.38 196
23 12.25 -84.38 -28.12 5.31 98
24 -29.75 -43.12 -50.62 5.30 787
24a -15.75 -39.38 -50.62 4.64
24b -15.75 -43.12 -43.12 4.00
25 1.75 -43.12 -1.88 5.29 147
26 -15.75 -28.12 -43.12 5.24 49
27 12.25 -13.12 -28.12 5.23 147
28 -47.25 -13.12 13.12 5.21 442
29 -19.25 -50.62 -39.38 5.19 639
29a -8.75 -35.62 -39.38 4.36
29b -12.25 -46.88 -39.38 3.96
30 -40.25 -35.62 -35.62 5.17 344
31 12.25 -28.12 -73.12 5.16 147
32 19.25 -31.88 16.88 5.10 49
33 -1.75 -50.62 -39.38 5.08 98
34 -50.75 35.62 -16.88 5.08 196
35 -26.25 -54.38 46.88 5.06 98
36 -54.25 -31.88 -13.12 5.06 49
37 -8.75 -46.88 -65.62 5.05 344
38 1.75 -58.12 -24.38 5.05 246
39 -33.25 13.12 28.12 5.05 836
39a -36.75 20.62 35.62 4.60
40 -12.25 5.62 -16.88 5.03 98
41 12.25 -58.12 -28.12 5.03 344
42 19.25 -43.12 -20.62 5.02 98
43 -26.25 -20.62 -13.12 5.02 147
44 -47.25 -39.38 -20.62 5.00 1476
44a -47.25 -24.38 -16.88 4.41
44b -50.75 -39.38 -9.38 4.39
45 -40.25 -61.88 -16.88 4.99 344
46 5.25 -61.88 -20.62 4.97 689
46a 19.25 -65.62 -24.38 4.25
46b 12.25 -61.88 -20.62 3.99
46c 26.25 -61.88 -16.88 3.58
47 -61.25 -5.62 20.62 4.96 98
48 40.25 16.88 -20.62 4.96 49
49 -26.25 -54.38 -46.88 4.95 147
50 22.75 31.88 9.38 4.93 49
51 8.75 -16.88 46.88 4.93 49
52 -43.75 50.62 16.88 4.90 98
53 22.75 -20.62 -35.62 4.90 98
54 -29.75 -84.38 1.88 4.89 590
54a -36.75 -76.88 1.88 4.46
54b -36.75 -69.38 5.62 4.13
55 -40.25 -20.62 -31.88 4.83 49
56 -36.75 58.12 35.62 4.83 98
57 19.25 35.62 28.12 4.82 49
58 -1.75 -46.88 -24.38 4.81 295
59 33.25 -9.38 -58.12 4.80 98
60 -29.75 -58.12 -9.38 4.80 49
61 -36.75 -39.38 31.88 4.80 344
62 -15.75 -31.88 -61.88 4.80 49
63 -40.25 24.38 -9.38 4.78 49
64 33.25 31.88 -9.38 4.77 98
65 -1.75 -46.88 1.88 4.76 147
66 1.75 -1.88 31.88 4.76 98
67 -40.25 -28.12 -20.62 4.75 49
68 -33.25 -13.12 -13.12 4.75 344
69 -15.75 -1.88 -69.38 4.75 49
70 -47.25 24.38 20.62 4.75 442
70a -54.25 13.12 20.62 4.03
71 26.25 31.88 -31.88 4.75 147
72 -12.25 -58.12 -16.88 4.74 49
73 -12.25 -5.62 28.12 4.74 689
73a -12.25 9.38 24.38 4.48
74 36.75 -61.88 -5.62 4.74 147
75 -33.25 -73.12 31.88 4.72 49
76 12.25 43.12 -16.88 4.72 49
77 -1.75 -9.38 -20.62 4.71 49
78 -47.25 -54.38 -9.38 4.69 393
79 8.75 -91.88 5.62 4.68 49
80 -50.75 9.38 9.38 4.67 49
81 8.75 -20.62 -13.12 4.67 147
82 -22.75 16.88 5.62 4.66 344
82a -29.75 24.38 5.62 3.41
83 29.75 -50.62 -50.62 4.66 246
84 -5.25 -13.12 -69.38 4.66 147
85 19.25 -35.62 69.38 4.65 49
86 22.75 -35.62 54.38 4.64 295
86a 26.25 -43.12 54.38 4.06
87 -47.25 -9.38 5.62 4.63 295
88 -1.75 -54.38 -9.38 4.62 98
89 19.25 -39.38 -13.12 4.61 49
90 33.25 9.38 -24.38 4.61 98
91 22.75 46.88 -16.88 4.61 98
92 22.75 -16.88 -9.38 4.61 98
93 -43.75 24.38 -1.88 4.59 196
94 15.75 50.62 58.12 4.59 98
95 19.25 16.88 28.12 4.59 49
96 -40.25 -65.62 -5.62 4.59 98
97 -29.75 -80.62 -9.38 4.58 98
98 -15.75 -76.88 28.12 4.57 344
99 -57.75 -16.88 1.88 4.57 98
100 22.75 9.38 16.88 4.57 295
101 -1.75 13.12 -20.62 4.57 98
102 40.25 -35.62 -43.12 4.56 49
103 -5.25 -31.88 58.12 4.55 49
104 12.25 24.38 61.88 4.55 98
105 26.25 28.12 -20.62 4.55 196
106 -57.75 5.62 13.12 4.55 492
106a -61.25 -1.88 9.38 4.19
106b -57.75 -9.38 9.38 4.13
107 19.25 -1.88 28.12 4.54 147
108 5.25 -76.88 24.38 4.54 49
109 33.25 20.62 -20.62 4.54 98
110 -15.75 16.88 43.12 4.53 196
111 -47.25 -28.12 5.62 4.51 49
112 -29.75 13.12 -13.12 4.51 295
112a -26.25 5.62 -13.12 4.20
113 12.25 -80.62 13.12 4.51 147
114 -8.75 84.38 20.62 4.50 196
115 15.75 -35.62 73.12 4.50 246
116 -15.75 -16.88 24.38 4.49 147
117 -15.75 9.38 -20.62 4.49 98
118 22.75 -28.12 69.38 4.49 147
119 12.25 -9.38 13.12 4.49 393
119a 26.25 -9.38 13.12 4.01
120 5.25 -43.12 -9.38 4.49 49
121 -1.75 -9.38 -46.88 4.49 344
122 -26.25 13.12 46.88 4.48 49
123 -12.25 -13.12 -46.88 4.48 147
124 -1.75 -50.62 -1.88 4.47 49
125 1.75 24.38 31.88 4.47 49
126 -5.25 -24.38 -20.62 4.45 196
127 8.75 16.88 -20.62 4.45 49
128 15.75 -24.38 -35.62 4.45 344
129 -22.75 31.88 -24.38 4.45 98
130 -47.25 -28.12 43.12 4.44 49
131 -33.25 13.12 13.12 4.44 295
132 -47.25 -61.88 -5.62 4.44 98
133 -50.75 39.38 9.38 4.44 49
134 -50.75 -20.62 9.38 4.43 98
135 33.25 -24.38 -13.12 4.43 147
136 -15.75 -20.62 -58.12 4.43 98
137 -54.25 -46.88 -5.62 4.42 98
138 40.25 31.88 13.12 4.42 49
139 -43.75 16.88 58.12 4.42 49
140 -12.25 -58.12 -46.88 4.40 49
141 -22.75 -9.38 13.12 4.40 49
142 22.75 16.88 5.62 4.39 196
143 50.75 1.88 43.12 4.39 147
144 -1.75 -39.38 1.88 4.39 295
145 -50.75 -16.88 24.38 4.38 49
146 36.75 50.62 1.88 4.38 147
147 22.75 13.12 35.62 4.36 344
147a 12.25 20.62 35.62 4.14
148 -36.75 16.88 50.62 4.36 196
149 36.75 43.12 -28.12 4.35 49
150 33.25 24.38 39.38 4.35 49
151 36.75 5.62 35.62 4.34 196
152 29.75 -31.88 39.38 4.34 541
152a 40.25 -35.62 39.38 3.94
153 -15.75 -50.62 -1.88 4.33 98
154 -5.25 -46.88 -16.88 4.33 738
155 -1.75 -65.62 16.88 4.33 344
155a 5.25 -73.12 16.88 4.13
156 -47.25 35.62 16.88 4.33 344
157 -36.75 43.12 24.38 4.32 98
158 -54.25 -20.62 -9.38 4.32 49
159 -15.75 20.62 -46.88 4.32 98
160 47.25 -54.38 -16.88 4.31 49
161 -50.75 -50.62 20.62 4.31 49
162 -22.75 1.88 -1.88 4.31 49
163 -26.25 1.88 43.12 4.31 98
164 -15.75 -54.38 43.12 4.31 49
165 8.75 13.12 50.62 4.30 98
166 -15.75 -73.12 -13.12 4.30 147
167 54.25 -24.38 -5.62 4.29 246
168 -15.75 -1.88 16.88 4.29 49
169 -43.75 43.12 -28.12 4.28 147
170 68.25 -1.88 -9.38 4.28 196
170a 68.25 -13.12 -9.38 4.25
171 -50.75 16.88 -1.88 4.28 49
172 19.25 -69.38 -13.12 4.28 147
173 12.25 50.62 -1.88 4.28 98
174 19.25 -9.38 20.62 4.28 49
175 -19.25 1.88 58.12 4.27 98
176 -29.75 -80.62 -24.38 4.27 49
177 19.25 -1.88 43.12 4.26 98
178 -19.25 -58.12 -9.38 4.26 49
179 -5.25 31.88 -20.62 4.25 147
180 -15.75 -46.88 -5.62 4.25 98
181 54.25 -9.38 20.62 4.25 246
182 -47.25 -58.12 13.12 4.25 98
183 50.75 -54.38 -9.38 4.23 49
184 -50.75 -5.62 -5.62 4.23 196
185 -22.75 -69.38 -13.12 4.23 196
186 19.25 16.88 13.12 4.23 147
187 15.75 9.38 43.12 4.22 246
188 1.75 13.12 9.38 4.22 49
189 12.25 -54.38 -54.38 4.22 49
190 15.75 -88.12 5.62 4.21 98
191 -40.25 5.62 -28.12 4.21 246
192 40.25 -31.88 54.38 4.21 98
193 -1.75 -1.88 1.88 4.20 246
194 -1.75 1.88 13.12 4.20 49
195 12.25 -9.38 5.62 4.20 49
196 12.25 24.38 -39.38 4.19 393
196a 12.25 20.62 -46.88 3.64
197 50.75 43.12 -5.62 4.19 49
198 -1.75 -58.12 -54.38 4.19 49
199 -47.25 -28.12 13.12 4.18 98
200 -26.25 50.62 5.62 4.18 196
201 15.75 -1.88 -16.88 4.17 196
202 54.25 1.88 35.62 4.17 98
203 -47.25 -43.12 9.38 4.17 147
204 40.25 5.62 -24.38 4.17 49
205 40.25 35.62 -1.88 4.17 49
206 22.75 46.88 13.12 4.16 49
207 50.75 -5.62 5.62 4.16 49
208 -40.25 -58.12 9.38 4.16 98
209 -26.25 -31.88 16.88 4.16 49
210 -22.75 -54.38 -61.88 4.16 147
211 -12.25 20.62 73.12 4.15 246
212 -36.75 43.12 1.88 4.15 196
213 19.25 -24.38 16.88 4.15 49
214 8.75 46.88 -5.62 4.14 49
215 19.25 -9.38 5.62 4.14 98
216 -26.25 -28.12 -31.88 4.13 49
217 54.25 -20.62 39.38 4.13 196
218 36.75 -35.62 -9.38 4.13 393
219 -19.25 61.88 5.62 4.13 49
220 26.25 -61.88 31.88 4.13 49
221 5.25 -28.12 -9.38 4.13 147
222 -54.25 1.88 13.12 4.13 49
223 -50.75 13.12 -5.62 4.12 49
224 -8.75 -46.88 -31.88 4.12 49
225 -15.75 13.12 50.62 4.12 147
226 -40.25 -46.88 1.88 4.10 147
227 -33.25 -35.62 -65.62 4.10 98
228 12.25 80.62 35.62 4.10 246
229 29.75 -31.88 -31.88 4.10 49
230 -33.25 1.88 -16.88 4.10 147
231 -29.75 -1.88 -24.38 4.09 98
232 -54.25 46.88 9.38 4.09 98
233 -43.75 -65.62 24.38 4.08 49
234 1.75 -5.62 -13.12 4.08 49
235 1.75 -5.62 -54.38 4.07 49
236 19.25 13.12 -1.88 4.07 98
237 -61.25 -20.62 13.12 4.07 49
238 22.75 -35.62 -20.62 4.06 147
239 29.75 -43.12 -58.12 4.06 49
240 26.25 24.38 13.12 4.06 147
241 -8.75 5.62 -24.38 4.06 49
242 -15.75 24.38 -9.38 4.05 98
243 -15.75 -1.88 -31.88 4.05 49
244 8.75 20.62 -24.38 4.05 49
245 -22.75 -1.88 -20.62 4.05 442
246 26.25 1.88 13.12 4.04 147
247 -33.25 28.12 31.88 4.04 246
248 29.75 -58.12 -46.88 4.04 49
249 5.25 -61.88 54.38 4.03 196
250 40.25 9.38 -20.62 4.02 98
251 -54.25 5.62 -16.88 4.01 246
252 -33.25 -35.62 -9.38 4.01 98
253 -26.25 -73.12 -35.62 4.01 98
254 47.25 43.12 9.38 4.00 49
255 1.75 -76.88 35.62 4.00 49
256 -33.25 -69.38 39.38 4.00 49
257 -47.25 -65.62 1.88 4.00 196
258 -12.25 46.88 28.12 4.00 49
259 -1.75 -24.38 9.38 3.99 49
260 -1.75 58.12 13.12 3.99 49
261 -19.25 13.12 28.12 3.99 49
262 29.75 65.62 43.12 3.98 49
263 40.25 -20.62 20.62 3.98 147
264 36.75 28.12 -35.62 3.97 49
265 -57.75 -31.88 -5.62 3.97 49
266 -19.25 24.38 31.88 3.97 49
267 -50.75 28.12 46.88 3.97 98
268 61.25 -31.88 39.38 3.97 49
269 -47.25 20.62 -13.12 3.96 246
270 47.25 16.88 -39.38 3.96 98
271 64.75 -43.12 5.62 3.95 49
272 -15.75 -31.88 -16.88 3.95 49
273 5.25 -88.12 -1.88 3.95 49
274 22.75 -69.38 1.88 3.95 147
275 12.25 9.38 28.12 3.94 147
276 36.75 -73.12 5.62 3.94 98
277 33.25 43.12 35.62 3.94 49
278 33.25 43.12 24.38 3.93 49
279 26.25 -20.62 -65.62 3.93 246
280 -22.75 -76.88 -16.88 3.93 49
281 54.25 -28.12 -9.38 3.93 98
282 12.25 -9.38 50.62 3.92 49
283 -12.25 -28.12 -50.62 3.92 196
284 15.75 -35.62 31.88 3.92 98
285 15.75 -1.88 -1.88 3.92 49
286 5.25 -28.12 73.12 3.92 49
287 -26.25 -61.88 35.62 3.92 147
288 5.25 -58.12 -54.38 3.92 49
289 -19.25 -76.88 -28.12 3.91 98
290 19.25 -76.88 -35.62 3.91 98
291 22.75 5.62 -1.88 3.91 49
292 -54.25 -20.62 -24.38 3.91 98
293 -1.75 -9.38 -5.62 3.91 49
294 15.75 -20.62 73.12 3.91 147
295 19.25 65.62 9.38 3.91 49
296 -64.75 -13.12 -24.38 3.91 49
297 -15.75 -5.62 61.88 3.91 147
298 -26.25 24.38 13.12 3.90 98
299 -19.25 -13.12 61.88 3.90 49
300 -22.75 13.12 -24.38 3.90 49
301 19.25 54.38 1.88 3.90 147
302 -15.75 54.38 54.38 3.90 98
303 1.75 -31.88 1.88 3.89 147
304 -33.25 39.38 54.38 3.89 49
305 33.25 50.62 50.62 3.89 49
306 5.25 -35.62 -58.12 3.89 98
307 -47.25 -28.12 28.12 3.89 49
308 12.25 69.38 5.62 3.89 49
309 5.25 -50.62 -20.62 3.88 98
310 15.75 88.12 9.38 3.88 98
311 -19.25 -50.62 16.88 3.88 49
312 -47.25 16.88 5.62 3.88 98
313 -47.25 -13.12 -54.38 3.88 98
314 -1.75 -16.88 -28.12 3.87 49
315 33.25 -28.12 65.62 3.87 344
315a 33.25 -13.12 65.62 3.63
315b 26.25 -20.62 65.62 3.49
316 19.25 35.62 1.88 3.87 147
317 33.25 5.62 28.12 3.86 49
318 -47.25 16.88 -24.38 3.86 49
319 -54.25 -24.38 -39.38 3.86 98
320 22.75 -16.88 43.12 3.86 49
321 -47.25 20.62 46.88 3.86 49
322 57.75 -20.62 28.12 3.85 49
323 36.75 1.88 20.62 3.85 98
324 -47.25 -39.38 16.88 3.85 49
325 50.75 -50.62 9.38 3.85 98
326 -54.25 -20.62 -50.62 3.85 49
327 36.75 -39.38 -69.38 3.85 49
328 15.75 -73.12 -31.88 3.85 49
329 -26.25 -35.62 -9.38 3.85 147
330 19.25 20.62 20.62 3.84 147
331 -19.25 -20.62 -35.62 3.84 98
332 12.25 -9.38 31.88 3.83 196
333 -33.25 -35.62 46.88 3.83 98
334 1.75 16.88 -39.38 3.83 246
334a -1.75 24.38 -39.38 3.64
335 -29.75 -46.88 -13.12 3.82 49
336 26.25 -65.62 46.88 3.82 49
337 1.75 -20.62 -35.62 3.82 49
338 26.25 5.62 5.62 3.82 98
339 -54.25 -39.38 1.88 3.81 246
339a -57.75 -46.88 -1.88 3.78
340 -40.25 16.88 24.38 3.81 98
341 -1.75 -43.12 -9.38 3.81 49
342 -5.25 -84.38 -20.62 3.81 49
343 33.25 -35.62 -5.62 3.80 49
344 1.75 -35.62 -61.88 3.78 98
345 -1.75 -28.12 20.62 3.78 98
346 1.75 -58.12 -13.12 3.78 49
347 -36.75 61.88 16.88 3.78 98
348 12.25 -46.88 -46.88 3.78 49
349 -12.25 -20.62 -46.88 3.78 49
350 29.75 16.88 35.62 3.78 49
351 26.25 13.12 9.38 3.77 98
352 15.75 -20.62 -20.62 3.77 49
353 -33.25 35.62 -24.38 3.77 98
354 8.75 -24.38 9.38 3.77 49
355 -22.75 -50.62 54.38 3.76 49
356 36.75 -73.12 -9.38 3.76 49
357 8.75 -73.12 35.62 3.76 49
358 -1.75 -16.88 24.38 3.76 49
359 -15.75 -16.88 -43.12 3.76 49
360 22.75 -73.12 -5.62 3.76 49
361 12.25 16.88 -50.62 3.76 49
362 -12.25 54.38 -9.38 3.75 98
363 22.75 24.38 43.12 3.75 147
364 19.25 43.12 -5.62 3.75 49
365 -12.25 -39.38 -5.62 3.75 344
366 43.75 -5.62 -13.12 3.74 49
367 47.25 13.12 -20.62 3.74 49
368 -54.25 -9.38 20.62 3.74 98
369 12.25 -35.62 9.38 3.74 49
370 -57.75 -1.88 -13.12 3.74 98
371 -33.25 -43.12 -28.12 3.74 196
372 47.25 13.12 5.62 3.74 98
373 1.75 -84.38 -16.88 3.74 49
374 40.25 28.12 -39.38 3.74 49
375 33.25 50.62 24.38 3.74 98
376 -1.75 -9.38 69.38 3.74 98
377 19.25 -16.88 16.88 3.74 98
378 -33.25 65.62 20.62 3.73 98
379 -29.75 16.88 -5.62 3.73 49
380 22.75 46.88 5.62 3.73 49
381 1.75 -16.88 -24.38 3.73 49
382 12.25 -65.62 -13.12 3.73 49
383 22.75 16.88 50.62 3.73 98
384 19.25 -50.62 -73.12 3.73 49
385 -33.25 -43.12 58.12 3.72 98
386 -47.25 -58.12 -28.12 3.72 49
387 19.25 9.38 20.62 3.72 49
388 -5.25 -43.12 69.38 3.72 147
389 -8.75 39.38 5.62 3.72 49
390 26.25 20.62 -24.38 3.71 98
391 -29.75 35.62 -1.88 3.71 49
392 33.25 43.12 -16.88 3.71 49
393 40.25 -58.12 5.62 3.71 98
394 40.25 -5.62 46.88 3.70 147
395 33.25 -9.38 -9.38 3.70 49
396 -68.25 -24.38 13.12 3.70 49
397 -15.75 -76.88 20.62 3.70 49
398 43.75 31.88 5.62 3.70 49
399 1.75 65.62 -16.88 3.70 98
400 26.25 -20.62 20.62 3.70 49
401 47.25 20.62 5.62 3.70 98
402 -29.75 20.62 -24.38 3.70 49
403 -47.25 46.88 20.62 3.70 49
404 15.75 1.88 35.62 3.69 49
405 40.25 -43.12 -28.12 3.69 49
406 -40.25 39.38 43.12 3.69 246
407 -54.25 -35.62 -5.62 3.69 49
408 -12.25 -20.62 -61.88 3.69 49
409 -50.75 13.12 -39.38 3.68 49
410 5.25 1.88 13.12 3.68 98
411 43.75 -69.38 -1.88 3.68 49
412 -22.75 -80.62 1.88 3.68 49
413 -36.75 -31.88 -46.88 3.68 49
414 26.25 -39.38 35.62 3.68 98
415 8.75 28.12 -24.38 3.67 49
416 -15.75 5.62 65.62 3.67 98
417 5.25 -65.62 -13.12 3.67 98
418 54.25 -5.62 13.12 3.67 49
419 -33.25 46.88 35.62 3.67 98
420 33.25 -20.62 -9.38 3.67 49
421 36.75 -31.88 13.12 3.66 49
422 36.75 35.62 16.88 3.66 344
423 -36.75 -35.62 39.38 3.66 49
424 1.75 9.38 -16.88 3.65 49
425 -47.25 -13.12 35.62 3.65 49
426 -50.75 5.62 -9.38 3.65 49
427 19.25 -9.38 35.62 3.65 49
428 -5.25 -20.62 1.88 3.65 49
429 57.75 -39.38 5.62 3.64 49
430 -36.75 16.88 1.88 3.64 49
431 -36.75 -13.12 9.38 3.64 49
432 -8.75 -39.38 -31.88 3.64 49
433 12.25 -1.88 -69.38 3.64 98
434 -1.75 -9.38 31.88 3.64 98
435 -15.75 -50.62 -31.88 3.63 196
436 -40.25 -16.88 -50.62 3.63 49
437 29.75 -16.88 58.12 3.62 49
438 43.75 24.38 -5.62 3.62 49
439 -1.75 -43.12 -31.88 3.62 49
440 -8.75 46.88 24.38 3.62 98
441 19.25 -61.88 35.62 3.61 49
442 -12.25 -16.88 -65.62 3.61 49
443 50.75 50.62 -1.88 3.61 49
444 33.25 -50.62 -28.12 3.61 49
445 -8.75 39.38 -28.12 3.61 49
446 22.75 -5.62 20.62 3.61 147
447 50.75 -43.12 9.38 3.61 49
448 -54.25 -28.12 -16.88 3.61 49
449 -12.25 16.88 20.62 3.61 147
450 -22.75 -5.62 -1.88 3.60 49
451 29.75 35.62 39.38 3.60 49
452 -47.25 -24.38 -5.62 3.60 49
453 12.25 61.88 5.62 3.60 49
454 -43.75 43.12 5.62 3.59 49
455 33.25 -28.12 58.12 3.59 49
456 19.25 28.12 31.88 3.59 49
457 -19.25 -61.88 20.62 3.59 49
458 57.75 35.62 28.12 3.58 98
459 33.25 -35.62 -35.62 3.58 49
460 -19.25 -9.38 -65.62 3.58 49
461 -40.25 -46.88 -5.62 3.58 98
462 5.25 -80.62 -1.88 3.58 49
463 -15.75 -5.62 1.88 3.58 98
464 29.75 -1.88 -20.62 3.58 49
465 5.25 5.62 -69.38 3.57 49
466 5.25 -9.38 -20.62 3.57 49
467 15.75 -13.12 -73.12 3.57 98
468 -57.75 -9.38 16.88 3.57 147
469 -1.75 1.88 69.38 3.56 98
470 -43.75 13.12 13.12 3.56 98
471 26.25 31.88 43.12 3.56 49
472 -33.25 73.12 20.62 3.56 49
473 36.75 20.62 31.88 3.56 49
474 -12.25 13.12 58.12 3.56 49
475 -43.75 58.12 20.62 3.56 98
476 -29.75 -24.38 -9.38 3.55 49
477 -33.25 -16.88 -5.62 3.55 49
478 -12.25 5.62 35.62 3.55 295
479 19.25 -31.88 -16.88 3.55 49
480 -61.25 -16.88 9.38 3.55 49
481 50.75 -13.12 5.62 3.54 49
482 -26.25 -35.62 54.38 3.54 49
483 26.25 -54.38 -13.12 3.54 98
484 -1.75 46.88 54.38 3.54 98
485 47.25 28.12 -39.38 3.54 49
486 -29.75 43.12 39.38 3.54 98
487 -47.25 43.12 9.38 3.54 49
488 57.75 -13.12 16.88 3.54 49
489 -40.25 13.12 -43.12 3.53 49
490 22.75 69.38 5.62 3.53 98
491 -12.25 -76.88 -9.38 3.53 49
492 -1.75 -50.62 -16.88 3.52 49
493 -5.25 43.12 -16.88 3.52 49
494 -5.25 1.88 1.88 3.52 49
495 -22.75 1.88 28.12 3.52 49
496 -1.75 9.38 9.38 3.52 49
497 22.75 -54.38 61.88 3.52 49
498 19.25 -84.38 -20.62 3.52 49
499 40.25 -28.12 -69.38 3.52 98
500 40.25 39.38 28.12 3.52 49
501 15.75 20.62 43.12 3.51 49
502 22.75 -24.38 1.88 3.51 49
503 22.75 -1.88 5.62 3.51 49
504 -47.25 -1.88 -20.62 3.51 49
505 43.75 9.38 -39.38 3.51 49
506 19.25 -58.12 -13.12 3.51 49
507 1.75 -58.12 9.38 3.50 49
508 -29.75 -65.62 -20.62 3.50 49
509 -50.75 -9.38 -13.12 3.50 49
510 15.75 -73.12 -20.62 3.50 49
511 40.25 65.62 31.88 3.50 49
512 26.25 -5.62 -1.88 3.50 49
513 -8.75 -13.12 5.62 3.50 49
514 5.25 -16.88 69.38 3.49 49
515 19.25 46.88 39.38 3.49 49
516 -29.75 -80.62 20.62 3.48 49
517 61.25 -35.62 35.62 3.48 49
518 36.75 50.62 -16.88 3.48 49
519 40.25 -35.62 50.62 3.48 49
520 -1.75 -5.62 -73.12 3.48 49
521 19.25 -31.88 -54.38 3.47 49
522 -33.25 1.88 31.88 3.47 98
523 47.25 5.62 31.88 3.47 49
524 15.75 1.88 58.12 3.47 98
525 -36.75 -46.88 9.38 3.47 98
526 15.75 -24.38 -73.12 3.47 49
527 -36.75 61.88 9.38 3.47 49
528 -8.75 39.38 31.88 3.46 49
529 -40.25 -69.38 31.88 3.46 49
530 5.25 -50.62 -5.62 3.46 49
531 -47.25 1.88 -28.12 3.45 49
532 12.25 69.38 -13.12 3.45 49
533 33.25 39.38 28.12 3.45 49
534 -43.75 35.62 31.88 3.45 98
535 -1.75 20.62 -16.88 3.45 147
536 47.25 16.88 39.38 3.45 49
537 36.75 -46.88 9.38 3.45 49
538 -19.25 -50.62 -46.88 3.45 49
539 36.75 -54.38 -28.12 3.44 49
540 1.75 28.12 -5.62 3.44 49
541 -1.75 -28.12 58.12 3.44 49
542 19.25 -61.88 -46.88 3.44 98
543 12.25 5.62 13.12 3.44 49
544 -64.75 20.62 5.62 3.44 98
545 40.25 -9.38 -31.88 3.44 49
546 -1.75 -9.38 -28.12 3.43 49
547 5.25 -16.88 -20.62 3.43 49
548 19.25 -13.12 28.12 3.43 49
549 -64.75 -35.62 -1.88 3.43 49
550 1.75 -1.88 -20.62 3.43 49
551 33.25 -24.38 -58.12 3.43 49
552 33.25 -43.12 -35.62 3.43 49
553 -19.25 -16.88 9.38 3.42 49
554 26.25 80.62 24.38 3.42 49
555 8.75 13.12 16.88 3.42 49
556 54.25 -28.12 24.38 3.42 49
557 -22.75 -28.12 31.88 3.42 49
558 54.25 -28.12 31.88 3.42 49
559 1.75 84.38 1.88 3.42 49
560 47.25 31.88 -24.38 3.42 49
561 -12.25 -50.62 -24.38 3.42 49
562 -36.75 -5.62 -20.62 3.41 49
563 -15.75 -73.12 39.38 3.41 98
564 -15.75 35.62 5.62 3.41 49
565 47.25 -31.88 -39.38 3.41 98
566 26.25 -16.88 -58.12 3.41 49
567 12.25 -9.38 -24.38 3.41 49
568 -19.25 -43.12 31.88 3.41 49
569 -19.25 -31.88 -69.38 3.41 98
570 -43.75 50.62 28.12 3.40 49
571 40.25 13.12 -46.88 3.40 49
572 19.25 -46.88 31.88 3.40 49
573 12.25 -9.38 43.12 3.40 49
574 40.25 -9.38 28.12 3.40 49
575 33.25 5.62 50.62 3.40 49
576 15.75 -16.88 5.62 3.40 49
577 22.75 54.38 16.88 3.40 49
578 -22.75 -54.38 39.38 3.40 49
579 50.75 -20.62 -43.12 3.39 49
580 12.25 -1.88 24.38 3.39 49
581 -29.75 -20.62 -69.38 3.39 49
582 12.25 -35.62 -16.88 3.39 49
583 12.25 -84.38 -5.62 3.39 49
584 -29.75 -1.88 -1.88 3.38 49
585 -36.75 -50.62 -16.88 3.38 49
586 -5.25 -31.88 -13.12 3.38 147
587 -1.75 5.62 -39.38 3.38 49
588 -50.75 1.88 9.38 3.38 49
589 -22.75 24.38 20.62 3.38 49
590 22.75 39.38 20.62 3.38 49
591 -12.25 16.88 -50.62 3.38 49
592 -8.75 -9.38 -20.62 3.38 49
593 8.75 24.38 39.38 3.38 49
594 40.25 -35.62 -58.12 3.38 98
595 -33.25 -1.88 13.12 3.38 49
596 -50.75 -1.88 16.88 3.37 98
597 -36.75 -16.88 -46.88 3.37 49
598 47.25 -20.62 20.62 3.37 49
599 22.75 -9.38 43.12 3.37 49
600 1.75 1.88 -16.88 3.36 49
601 19.25 -28.12 -24.38 3.36 49
602 -22.75 -28.12 -65.62 3.36 49
603 -22.75 -28.12 -13.12 3.36 98
604 -19.25 -43.12 46.88 3.36 49
605 -5.25 76.88 5.62 3.36 49
606 68.25 -28.12 16.88 3.36 49
607 -8.75 -35.62 65.62 3.36 49
608 -33.25 -24.38 -65.62 3.35 49
609 -22.75 54.38 -20.62 3.35 49
610 8.75 -5.62 -24.38 3.35 49
611 5.25 46.88 13.12 3.35 98
612 -26.25 -43.12 54.38 3.35 49
613 15.75 35.62 5.62 3.35 49
614 -33.25 -58.12 -1.88 3.35 49
615 -8.75 -54.38 -31.88 3.35 49
616 26.25 28.12 -43.12 3.34 98
617 -29.75 39.38 35.62 3.34 49
618 8.75 -76.88 9.38 3.34 49
619 -29.75 -1.88 -46.88 3.34 49
620 12.25 -35.62 65.62 3.34 98
621 54.25 1.88 9.38 3.34 49
622 -22.75 20.62 -1.88 3.34 49
623 33.25 -76.88 -28.12 3.34 49
624 -1.75 -1.88 -5.62 3.34 49
625 47.25 -35.62 16.88 3.33 49
626 -15.75 -46.88 -24.38 3.33 49
627 -47.25 -61.88 20.62 3.33 49
628 -22.75 -54.38 -35.62 3.33 49
629 -5.25 1.88 -58.12 3.33 49
630 5.25 -61.88 -46.88 3.33 49
631 33.25 -46.88 54.38 3.33 147
632 26.25 -80.62 1.88 3.33 49
633 -43.75 -35.62 -1.88 3.33 98
634 36.75 -24.38 -31.88 3.33 49
635 26.25 -5.62 -13.12 3.32 49
636 -36.75 -73.12 -9.38 3.32 98
637 -47.25 -1.88 -13.12 3.32 49
638 33.25 -35.62 -46.88 3.32 49
639 -50.75 13.12 35.62 3.32 98
640 -12.25 -13.12 -73.12 3.32 49
641 -50.75 -58.12 1.88 3.32 49
642 8.75 20.62 -35.62 3.32 49
643 -36.75 -46.88 -24.38 3.32 98
644 -5.25 -54.38 -54.38 3.32 49
645 -29.75 9.38 61.88 3.31 147
646 15.75 -46.88 20.62 3.31 49
647 19.25 -9.38 -5.62 3.31 49
648 36.75 -24.38 9.38 3.31 49
649 -1.75 -16.88 -58.12 3.31 49
650 -19.25 -50.62 39.38 3.31 98
651 -19.25 -54.38 13.12 3.31 49
652 54.25 -16.88 -1.88 3.30 49
653 -12.25 20.62 13.12 3.30 49
654 -36.75 9.38 54.38 3.30 49
655 29.75 -46.88 -31.88 3.30 49
656 -12.25 -35.62 -58.12 3.30 49
657 15.75 -16.88 54.38 3.30 49
658 -26.25 50.62 28.12 3.30 49
659 61.25 1.88 24.38 3.30 49
660 15.75 -16.88 -58.12 3.30 49
661 1.75 -69.38 46.88 3.29 49
662 -8.75 54.38 43.12 3.29 49
663 -26.25 -31.88 -58.12 3.29 49
664 5.25 -73.12 -16.88 3.29 49
665 15.75 28.12 13.12 3.29 49
666 -12.25 13.12 65.62 3.29 49
667 -40.25 16.88 -9.38 3.29 49
668 -12.25 -9.38 -24.38 3.29 49
669 -15.75 -39.38 -9.38 3.29 49
670 -26.25 -24.38 -5.62 3.29 49
671 33.25 -39.38 -58.12 3.29 49
672 29.75 -9.38 9.38 3.28 49
673 -5.25 39.38 50.62 3.28 49
674 -29.75 -31.88 -31.88 3.28 49
675 50.75 39.38 -9.38 3.28 49
676 -36.75 -9.38 31.88 3.28 49
677 -15.75 80.62 5.62 3.28 49
678 22.75 -76.88 -1.88 3.28 49
679 26.25 -80.62 -9.38 3.27 49
680 5.25 -20.62 -31.88 3.27 49
681 -33.25 24.38 -28.12 3.27 49
682 -47.25 9.38 -9.38 3.27 49
683 40.25 -13.12 -5.62 3.27 49
684 -12.25 -20.62 -13.12 3.27 49
685 -19.25 65.62 39.38 3.26 49
686 -40.25 39.38 35.62 3.26 49
687 33.25 28.12 13.12 3.26 49
688 19.25 9.38 50.62 3.26 49
689 22.75 -13.12 73.12 3.26 49
690 -29.75 1.88 -39.38 3.26 49
691 -12.25 46.88 46.88 3.26 49
692 -50.75 -61.88 -28.12 3.26 49
693 -29.75 35.62 -9.38 3.26 49
694 -47.25 46.88 28.12 3.25 49
695 -54.25 24.38 24.38 3.25 49
696 -5.25 20.62 13.12 3.25 49
697 43.75 -39.38 -43.12 3.25 49
698 29.75 -43.12 58.12 3.25 49
699 -22.75 -39.38 -20.62 3.24 49
700 47.25 -54.38 13.12 3.24 49
701 12.25 -50.62 39.38 3.24 49
702 -12.25 -39.38 5.62 3.24 49
703 -40.25 -50.62 28.12 3.24 49
704 -1.75 -69.38 -13.12 3.24 49
705 15.75 5.62 -5.62 3.23 49
706 40.25 -5.62 58.12 3.23 49
707 -15.75 -43.12 -65.62 3.23 49
708 22.75 -50.62 35.62 3.23 49
709 40.25 5.62 39.38 3.23 49
710 50.75 -61.88 -13.12 3.23 49
711 47.25 -13.12 28.12 3.23 49
712 -5.25 5.62 -16.88 3.23 49
713 57.75 -24.38 -28.12 3.22 49
714 -33.25 -28.12 35.62 3.22 49
715 -12.25 1.88 20.62 3.22 49
716 -26.25 43.12 31.88 3.22 49
717 -19.25 -16.88 1.88 3.22 49
718 1.75 -5.62 65.62 3.22 49
719 -29.75 13.12 54.38 3.22 49
720 5.25 54.38 1.88 3.22 49
721 5.25 -13.12 -39.38 3.22 49
722 -5.25 9.38 43.12 3.22 49
723 -36.75 61.88 28.12 3.21 49
724 -12.25 -16.88 9.38 3.21 49
725 -64.75 -9.38 -9.38 3.21 49
726 50.75 -13.12 43.12 3.21 49
727 29.75 -50.62 -13.12 3.21 49
728 40.25 -9.38 -13.12 3.21 49
729 -47.25 -20.62 -1.88 3.21 49
730 -33.25 16.88 -46.88 3.21 49
731 -47.25 9.38 28.12 3.21 49
732 36.75 -50.62 -1.88 3.21 49
733 -36.75 -46.88 46.88 3.21 49
734 15.75 28.12 -5.62 3.20 49
735 -19.25 -54.38 -43.12 3.20 49
736 -57.75 -31.88 24.38 3.20 98
737 -15.75 -16.88 -28.12 3.20 98
738 50.75 -16.88 28.12 3.20 49
739 1.75 -65.62 -43.12 3.19 49
740 -29.75 -24.38 -16.88 3.19 49
741 19.25 -1.88 50.62 3.19 49
742 -22.75 -20.62 -31.88 3.19 49
743 -68.25 -24.38 5.62 3.19 49
744 19.25 -20.62 39.38 3.19 49
745 33.25 -20.62 28.12 3.19 49
746 -40.25 -5.62 35.62 3.19 49
747 12.25 -58.12 46.88 3.19 98
748 -26.25 -76.88 35.62 3.19 49
749 -8.75 -65.62 -43.12 3.18 49
750 -22.75 20.62 -46.88 3.18 49
751 -40.25 -65.62 -31.88 3.18 49
752 -47.25 -20.62 -43.12 3.18 49
753 -50.75 50.62 13.12 3.18 49
754 40.25 -43.12 9.38 3.18 98
755 19.25 -84.38 24.38 3.18 49
756 -36.75 -69.38 13.12 3.18 49
757 29.75 -1.88 -54.38 3.18 49
758 26.25 16.88 -20.62 3.18 49
759 43.75 -9.38 54.38 3.18 98
760 -19.25 -31.88 24.38 3.18 49
761 -19.25 43.12 -1.88 3.18 49
762 12.25 -65.62 1.88 3.17 49
763 40.25 -31.88 -35.62 3.17 49
764 -33.25 -39.38 -35.62 3.17 49
765 -19.25 31.88 43.12 3.17 49
766 26.25 -54.38 31.88 3.17 49
767 40.25 -13.12 -24.38 3.17 49
768 8.75 -13.12 -58.12 3.17 49
769 -43.75 16.88 -43.12 3.17 49
770 26.25 -54.38 46.88 3.16 49
771 -50.75 -35.62 -54.38 3.16 49
772 33.25 -35.62 -16.88 3.16 98
773 -8.75 9.38 65.62 3.16 49
774 -29.75 -31.88 43.12 3.16 49
775 -19.25 -61.88 9.38 3.15 49
776 -40.25 -28.12 -9.38 3.15 49
777 -40.25 54.38 24.38 3.15 49
778 -19.25 -65.62 -20.62 3.15 49
779 -19.25 -9.38 -35.62 3.15 49
780 -47.25 31.88 -24.38 3.15 49
781 -50.75 -16.88 -13.12 3.15 49
782 -22.75 -5.62 -9.38 3.15 49
783 -43.75 -5.62 43.12 3.15 49
784 15.75 46.88 46.88 3.15 49
785 26.25 -20.62 58.12 3.15 49
786 12.25 1.88 20.62 3.15 49
787 -12.25 -5.62 -20.62 3.15 49
788 22.75 13.12 20.62 3.15 49
789 -15.75 54.38 5.62 3.14 49
790 43.75 5.62 -31.88 3.14 49
791 40.25 -28.12 35.62 3.14 49
792 -19.25 -31.88 -58.12 3.14 49
793 -54.25 24.38 -13.12 3.14 49
794 -15.75 -69.38 -43.12 3.14 49
795 15.75 16.88 -16.88 3.14 49
796 29.75 -39.38 -54.38 3.13 49
797 68.25 -28.12 9.38 3.13 49
798 40.25 -76.88 -9.38 3.13 49
799 8.75 -24.38 24.38 3.13 49
800 12.25 5.62 -54.38 3.13 49
801 57.75 35.62 -5.62 3.13 49
802 22.75 31.88 28.12 3.13 49
803 26.25 5.62 69.38 3.13 49
804 -50.75 50.62 -1.88 3.13 49
805 8.75 -20.62 -28.12 3.13 49
806 -1.75 -58.12 -16.88 3.13 49
807 47.25 -24.38 9.38 3.13 49
808 19.25 -28.12 9.38 3.13 49
809 -5.25 -58.12 -13.12 3.12 49
810 -19.25 -9.38 69.38 3.12 49
811 40.25 -69.38 9.38 3.12 49
812 -12.25 -54.38 -9.38 3.12 49
813 -54.25 -24.38 -31.88 3.12 49
814 -15.75 -43.12 1.88 3.12 49
815 43.75 1.88 46.88 3.12 49
816 33.25 -50.62 46.88 3.12 49
817 -1.75 -16.88 1.88 3.12 49
818 -12.25 -84.38 -5.62 3.12 49
819 -22.75 13.12 1.88 3.12 147
820 -26.25 9.38 -1.88 3.12 49
821 26.25 -43.12 5.62 3.12 49
822 29.75 -46.88 -43.12 3.11 49
823 5.25 84.38 16.88 3.11 49
824 8.75 54.38 5.62 3.11 49
825 -5.25 16.88 35.62 3.11 49
826 47.25 39.38 13.12 3.11 98
827 33.25 -24.38 -28.12 3.11 49
828 -15.75 16.88 -35.62 3.11 49
829 -33.25 -43.12 -61.88 3.11 49
830 12.25 -35.62 -61.88 3.11 49
831 12.25 -69.38 5.62 3.11 49
832 1.75 50.62 16.88 3.11 49
833 36.75 39.38 5.62 3.11 49
834 -36.75 -24.38 -61.88 3.11 49
835 -57.75 -24.38 5.62 3.11 49
836 22.75 73.12 31.88 3.10 49
837 26.25 9.38 24.38 3.10 49
838 -1.75 -1.88 24.38 3.10 49
839 -36.75 5.62 65.62 3.10 49
840 47.25 5.62 -1.88 3.10 49
841 12.25 5.62 5.62 3.10 49
842 1.75 54.38 13.12 3.10 49
843 -47.25 50.62 -9.38 3.10 49
844 -61.25 20.62 -24.38 3.10 49
845 8.75 39.38 20.62 3.10 49
846 19.25 -73.12 -1.88 3.09 49
847 22.75 9.38 46.88 3.09 49
848 -26.25 -39.38 -35.62 3.09 49

house

Stat map plot for the contrast: house
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -22.75 -39.38 -1.88 5.50 442
2 22.75 20.62 9.38 5.43 787
2a 22.75 24.38 16.88 4.16
2b 26.25 13.12 13.12 3.88
2c 15.75 28.12 13.12 3.73
3 -22.75 24.38 13.12 5.29 885
3a -22.75 16.88 5.62 4.27
3b -15.75 28.12 16.88 4.03
4 22.75 13.12 20.62 5.25 98
5 47.25 -54.38 -16.88 5.20 98
6 33.25 -43.12 -35.62 4.65 393
7 -29.75 28.12 5.62 4.60 98
8 22.75 -5.62 20.62 4.57 49
9 -33.25 -58.12 35.62 4.53 49
10 36.75 -54.38 -20.62 4.52 49
11 12.25 24.38 20.62 4.51 147
12 -50.75 9.38 -28.12 4.44 49
13 -40.25 -58.12 28.12 4.41 98
14 22.75 -31.88 1.88 4.39 49
15 22.75 -43.12 -31.88 4.38 49
16 33.25 5.62 -39.38 4.37 49
17 26.25 5.62 9.38 4.35 49
18 1.75 13.12 -16.88 4.33 49
19 8.75 -16.88 31.88 4.33 49
20 33.25 28.12 28.12 4.25 49
21 26.25 9.38 -31.88 4.23 49
22 -22.75 5.62 24.38 4.23 393
23 1.75 -46.88 -5.62 4.21 49
24 -26.25 39.38 46.88 4.21 196
25 19.25 5.62 43.12 4.21 98
26 43.75 -1.88 20.62 4.19 98
27 8.75 -24.38 24.38 4.16 49
28 19.25 -13.12 24.38 4.16 98
29 15.75 -39.38 13.12 4.13 49
30 -12.25 -16.88 -20.62 4.12 49
31 -29.75 16.88 9.38 4.11 49
32 -22.75 20.62 20.62 4.10 147
33 -12.25 -28.12 -76.88 4.08 49
34 26.25 -61.88 31.88 4.07 49
35 15.75 -54.38 5.62 4.05 49
36 -54.25 -20.62 -9.38 4.03 49
37 -15.75 -46.88 20.62 4.02 98
38 26.25 -1.88 13.12 4.00 49
39 -15.75 -35.62 -1.88 3.99 196
40 -12.25 -43.12 -16.88 3.97 49
41 -29.75 -31.88 35.62 3.96 49
42 -8.75 35.62 43.12 3.90 49
43 8.75 -9.38 31.88 3.88 98
44 5.25 -43.12 -1.88 3.87 196
45 -15.75 -50.62 24.38 3.87 49
46 -22.75 -9.38 -65.62 3.86 49
47 -15.75 -24.38 -9.38 3.85 196
48 -26.25 -50.62 -46.88 3.84 49
49 -8.75 -43.12 -9.38 3.84 49
50 22.75 -43.12 9.38 3.83 49
51 -8.75 -28.12 5.62 3.82 49
52 -12.25 -43.12 -50.62 3.82 49
53 -15.75 -31.88 -50.62 3.82 49
54 22.75 -39.38 46.88 3.81 49
55 22.75 -76.88 20.62 3.81 49
56 -40.25 -69.38 20.62 3.80 49
57 -29.75 -9.38 -31.88 3.78 49
58 -12.25 -39.38 46.88 3.77 49
59 5.25 31.88 50.62 3.77 49
60 -22.75 -58.12 24.38 3.75 49
61 -15.75 16.88 13.12 3.75 98
62 -1.75 -61.88 -39.38 3.75 49
63 50.75 -31.88 -50.62 3.74 49
64 50.75 50.62 -1.88 3.73 49
65 33.25 -50.62 -24.38 3.72 196
66 29.75 1.88 13.12 3.71 49
67 1.75 31.88 -13.12 3.69 49
68 26.25 9.38 -24.38 3.69 49
69 15.75 -28.12 -5.62 3.68 49
70 -43.75 58.12 9.38 3.67 49
71 -8.75 5.62 28.12 3.67 98
72 26.25 -13.12 54.38 3.66 49
73 33.25 -76.88 -24.38 3.64 49
74 -33.25 -24.38 35.62 3.64 49
75 19.25 -76.88 -16.88 3.63 98
76 -40.25 50.62 1.88 3.63 49
77 40.25 31.88 -24.38 3.62 49
78 33.25 43.12 50.62 3.62 49
79 26.25 -24.38 -69.38 3.62 49
80 33.25 9.38 1.88 3.62 49
81 -26.25 20.62 -1.88 3.62 49
82 22.75 -65.62 20.62 3.60 49
83 -15.75 20.62 1.88 3.60 49
84 -15.75 20.62 20.62 3.59 49
85 -33.25 -73.12 -31.88 3.58 49
86 22.75 -73.12 -13.12 3.58 49
87 57.75 -54.38 1.88 3.57 49
88 29.75 -43.12 -20.62 3.56 49
89 -22.75 -24.38 46.88 3.56 49
90 40.25 -13.12 -43.12 3.56 98
91 -29.75 -13.12 -20.62 3.55 49
92 -40.25 -28.12 -24.38 3.55 49
93 -43.75 -9.38 39.38 3.55 49
94 -26.25 -50.62 46.88 3.54 49
95 -26.25 13.12 16.88 3.54 98
96 -29.75 50.62 20.62 3.54 49
97 -22.75 -13.12 46.88 3.54 49
98 -36.75 24.38 13.12 3.53 49
99 22.75 -9.38 13.12 3.53 49
100 -12.25 1.88 -61.88 3.52 98
101 5.25 9.38 39.38 3.52 49
102 29.75 -54.38 -24.38 3.51 49
103 22.75 -43.12 31.88 3.51 49
104 5.25 -65.62 54.38 3.50 49
105 -50.75 31.88 9.38 3.49 49
106 -12.25 9.38 5.62 3.49 49
107 22.75 1.88 20.62 3.48 49
108 12.25 -5.62 -5.62 3.48 49
109 50.75 -43.12 -1.88 3.47 49
110 15.75 -1.88 69.38 3.46 49
111 26.25 -73.12 31.88 3.46 49
112 36.75 -61.88 -13.12 3.46 49
113 -1.75 39.38 -20.62 3.45 98
114 -26.25 -54.38 43.12 3.45 98
115 29.75 -46.88 -24.38 3.45 49
116 -57.75 20.62 13.12 3.45 49
117 -15.75 -50.62 -9.38 3.44 49
118 -26.25 -20.62 16.88 3.44 49
119 19.25 24.38 5.62 3.44 49
120 -26.25 1.88 13.12 3.44 49
121 -36.75 -61.88 35.62 3.44 49
122 61.25 -1.88 13.12 3.43 49
123 57.75 -16.88 16.88 3.43 49
124 15.75 1.88 58.12 3.43 49
125 -36.75 -65.62 -16.88 3.43 49
126 22.75 -46.88 -20.62 3.42 49
127 12.25 -31.88 -73.12 3.42 49
128 22.75 -16.88 16.88 3.42 49
129 33.25 54.38 28.12 3.41 49
130 -33.25 9.38 5.62 3.41 49
131 43.75 35.62 46.88 3.41 49
132 15.75 -28.12 24.38 3.41 49
133 -26.25 -76.88 -9.38 3.39 49
134 22.75 -13.12 20.62 3.39 49
135 -40.25 -46.88 39.38 3.39 49
136 -33.25 61.88 39.38 3.38 49
137 -36.75 -69.38 31.88 3.38 98
138 8.75 -61.88 -50.62 3.38 49
139 22.75 5.62 24.38 3.38 49
140 5.25 -20.62 -13.12 3.38 49
141 19.25 -35.62 -28.12 3.38 49
142 -15.75 -61.88 43.12 3.37 196
143 -33.25 13.12 -1.88 3.37 49
144 22.75 -46.88 -5.62 3.37 49
145 -15.75 -20.62 -28.12 3.37 49
146 12.25 -13.12 54.38 3.37 49
147 29.75 5.62 39.38 3.36 49
148 26.25 -20.62 24.38 3.36 49
149 15.75 -73.12 -28.12 3.36 49
150 -8.75 61.88 -16.88 3.36 49
151 -36.75 -50.62 -16.88 3.36 49
152 -64.75 -24.38 -20.62 3.35 49
153 -57.75 16.88 5.62 3.34 49
154 -15.75 58.12 5.62 3.34 49
155 -26.25 16.88 50.62 3.34 49
156 40.25 -39.38 13.12 3.34 49
157 36.75 -13.12 -31.88 3.34 49
158 26.25 -16.88 -9.38 3.34 49
159 15.75 16.88 50.62 3.34 49
160 -54.25 -13.12 -1.88 3.34 49
161 40.25 -50.62 -58.12 3.34 98
162 -8.75 -24.38 1.88 3.33 49
163 -22.75 -16.88 24.38 3.33 49
164 -1.75 28.12 61.88 3.33 49
165 26.25 -58.12 -16.88 3.33 98
166 54.25 9.38 -31.88 3.33 49
167 -22.75 35.62 -24.38 3.32 49
168 8.75 -80.62 -5.62 3.32 49
169 40.25 -16.88 -46.88 3.32 49
170 -15.75 -5.62 -13.12 3.31 98
171 -47.25 -76.88 9.38 3.31 49
172 -40.25 -1.88 24.38 3.30 49
173 33.25 -28.12 -13.12 3.30 49
174 8.75 -58.12 -24.38 3.29 49
175 19.25 -50.62 -13.12 3.29 49
176 12.25 -73.12 -13.12 3.29 49
177 -1.75 -31.88 13.12 3.29 49
178 47.25 -9.38 20.62 3.29 98
179 5.25 -35.62 -28.12 3.28 49
180 15.75 -50.62 9.38 3.28 49
181 29.75 1.88 -16.88 3.28 49
182 -19.25 61.88 20.62 3.28 49
183 -15.75 -20.62 1.88 3.27 49
184 5.25 -50.62 -5.62 3.27 49
185 36.75 -39.38 -24.38 3.27 49
186 -26.25 -20.62 -13.12 3.27 49
187 29.75 -16.88 46.88 3.26 49
188 15.75 -5.62 -16.88 3.26 49
189 26.25 -76.88 -16.88 3.26 49
190 26.25 -13.12 13.12 3.25 49
191 -12.25 50.62 -24.38 3.25 49
192 19.25 35.62 20.62 3.25 49
193 8.75 -5.62 -9.38 3.25 49
194 -15.75 -43.12 13.12 3.25 49
195 -36.75 -39.38 -46.88 3.24 49
196 -26.25 31.88 20.62 3.24 49
197 -12.25 13.12 1.88 3.24 98
198 12.25 -35.62 31.88 3.24 49
199 -40.25 24.38 35.62 3.24 49
200 -33.25 -61.88 39.38 3.24 49
201 -15.75 31.88 5.62 3.24 49
202 26.25 5.62 69.38 3.24 49
203 -40.25 43.12 46.88 3.24 49
204 50.75 -46.88 1.88 3.23 49
205 -8.75 -46.88 -31.88 3.23 49
206 -26.25 -80.62 -1.88 3.23 49
207 -19.25 5.62 61.88 3.23 49
208 19.25 -35.62 1.88 3.23 49
209 -40.25 -65.62 31.88 3.23 49
210 -15.75 -1.88 -16.88 3.22 49
211 33.25 13.12 -5.62 3.22 49
212 33.25 28.12 -46.88 3.21 49
213 12.25 5.62 61.88 3.21 49
214 -40.25 -24.38 -28.12 3.21 49
215 22.75 -54.38 -16.88 3.21 49
216 -43.75 31.88 31.88 3.20 49
217 15.75 -46.88 -58.12 3.20 49
218 8.75 43.12 -5.62 3.20 49
219 -26.25 16.88 -13.12 3.19 49
220 -12.25 -58.12 -46.88 3.19 49
221 1.75 -39.38 -1.88 3.19 49
222 22.75 46.88 -20.62 3.19 49
223 57.75 16.88 20.62 3.18 49
224 15.75 24.38 -13.12 3.18 49
225 -15.75 31.88 24.38 3.18 49
226 -12.25 24.38 -13.12 3.18 49
227 47.25 -50.62 -20.62 3.18 49
228 -15.75 -61.88 24.38 3.18 49
229 29.75 5.62 65.62 3.18 49
230 43.75 20.62 16.88 3.17 49
231 -15.75 28.12 28.12 3.17 49
232 29.75 -24.38 -54.38 3.17 49
233 -19.25 31.88 20.62 3.17 49
234 -22.75 35.62 20.62 3.17 49
235 36.75 -46.88 -9.38 3.17 49
236 -26.25 -31.88 -69.38 3.16 49
237 -12.25 43.12 -9.38 3.16 49
238 15.75 -50.62 43.12 3.15 49
239 -29.75 20.62 13.12 3.15 49
240 -15.75 13.12 73.12 3.15 49
241 -33.25 50.62 16.88 3.15 49
242 -19.25 1.88 28.12 3.15 49
243 -22.75 -16.88 -13.12 3.14 49
244 -40.25 20.62 9.38 3.14 49
245 -50.75 -35.62 -1.88 3.14 49
246 22.75 16.88 5.62 3.13 49
247 29.75 31.88 24.38 3.13 49
248 19.25 65.62 28.12 3.13 49
249 -12.25 43.12 46.88 3.12 49
250 -43.75 -69.38 24.38 3.12 49
251 -33.25 -20.62 -31.88 3.12 49
252 64.75 -43.12 1.88 3.12 49
253 -8.75 5.62 -5.62 3.12 49
254 12.25 35.62 -5.62 3.11 49
255 -19.25 -9.38 -28.12 3.11 49
256 50.75 -13.12 35.62 3.11 49
257 -40.25 -39.38 39.38 3.10 49
258 26.25 -9.38 5.62 3.10 49
259 26.25 -20.62 -28.12 3.09 49

chair

Stat map plot for the contrast: chair
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 40.25 -46.88 13.12 5.02 147
2 12.25 35.62 -5.62 4.88 196
3 -50.75 39.38 16.88 4.65 49
4 -15.75 -1.88 -16.88 4.21 49
5 33.25 -58.12 -1.88 4.16 49
6 -36.75 -76.88 1.88 4.15 49
7 -29.75 20.62 46.88 4.12 98
8 -54.25 -43.12 46.88 4.09 49
9 12.25 28.12 -16.88 4.08 98
10 12.25 5.62 -24.38 4.06 98
11 33.25 43.12 -16.88 3.99 49
12 33.25 -58.12 -16.88 3.97 49
13 -22.75 -43.12 -31.88 3.97 98
14 8.75 -35.62 -35.62 3.94 49
15 26.25 -46.88 -35.62 3.93 49
16 -5.25 43.12 50.62 3.89 49
17 12.25 16.88 -20.62 3.88 49
18 -36.75 -61.88 43.12 3.85 98
19 -50.75 -39.38 -1.88 3.83 147
20 -15.75 20.62 13.12 3.81 49
21 -22.75 1.88 5.62 3.78 49
22 -57.75 -9.38 -1.88 3.73 49
23 -1.75 5.62 31.88 3.69 49
24 -57.75 13.12 1.88 3.67 98
25 -36.75 -46.88 50.62 3.65 49
26 33.25 13.12 -1.88 3.64 49
27 36.75 -24.38 20.62 3.62 49
28 54.25 20.62 5.62 3.61 49
29 22.75 24.38 16.88 3.61 49
30 33.25 -20.62 -58.12 3.55 49
31 -22.75 -9.38 20.62 3.53 49
32 -22.75 24.38 13.12 3.53 49
33 29.75 -43.12 -35.62 3.52 49
34 12.25 16.88 -50.62 3.51 49
35 12.25 -1.88 69.38 3.51 49
36 -15.75 -39.38 -54.38 3.50 49
37 26.25 -69.38 31.88 3.50 147
38 -22.75 -31.88 -69.38 3.49 49
39 36.75 -1.88 28.12 3.48 49
40 -22.75 50.62 9.38 3.47 49
41 -22.75 -39.38 -28.12 3.47 49
42 26.25 16.88 16.88 3.46 49
43 -22.75 9.38 24.38 3.46 49
44 33.25 13.12 61.88 3.44 49
45 19.25 20.62 20.62 3.43 98
46 12.25 9.38 -1.88 3.43 49
47 36.75 20.62 -43.12 3.42 49
48 19.25 76.88 31.88 3.41 49
49 1.75 24.38 -39.38 3.40 49
50 29.75 9.38 -16.88 3.36 49
51 -26.25 -1.88 -50.62 3.36 49
52 33.25 9.38 -13.12 3.35 49
53 -68.25 1.88 5.62 3.33 49
54 -15.75 -39.38 -24.38 3.33 98
55 5.25 -1.88 31.88 3.33 49
56 22.75 -46.88 -24.38 3.32 49
57 22.75 -24.38 -61.88 3.31 49
58 43.75 -28.12 -13.12 3.30 49
59 5.25 -58.12 -24.38 3.27 49
60 -43.75 9.38 -31.88 3.26 98
61 -50.75 -28.12 -1.88 3.26 49
62 22.75 13.12 20.62 3.26 49
63 -36.75 -28.12 -9.38 3.25 49
64 -36.75 -31.88 -50.62 3.24 49
65 26.25 35.62 24.38 3.23 49
66 36.75 -28.12 -9.38 3.23 49
67 -5.25 28.12 61.88 3.23 49
68 -22.75 -1.88 -1.88 3.22 49
69 33.25 54.38 24.38 3.21 49
70 -1.75 9.38 -16.88 3.21 49
71 -57.75 28.12 31.88 3.19 49
72 29.75 -20.62 -5.62 3.19 49
73 -8.75 -20.62 -80.62 3.18 49
74 -43.75 -65.62 24.38 3.18 49
75 1.75 28.12 -35.62 3.18 49
76 26.25 31.88 20.62 3.18 49
77 -22.75 46.88 13.12 3.16 49
78 12.25 -16.88 -28.12 3.16 49
79 -29.75 24.38 -13.12 3.16 49
80 -43.75 -1.88 5.62 3.15 49
81 -29.75 -43.12 -58.12 3.15 49
82 -54.25 -5.62 -13.12 3.15 49
83 40.25 -50.62 -1.88 3.15 49
84 43.75 -35.62 -1.88 3.14 49
85 -57.75 13.12 -16.88 3.14 49
86 64.75 -20.62 39.38 3.14 49
87 15.75 16.88 28.12 3.14 49
88 -50.75 -24.38 54.38 3.14 49
89 33.25 -31.88 39.38 3.14 49
90 -15.75 -5.62 69.38 3.14 49
91 29.75 13.12 -43.12 3.13 49
92 29.75 43.12 13.12 3.12 49
93 -5.25 35.62 54.38 3.12 49
94 -50.75 16.88 31.88 3.12 49
95 50.75 -58.12 -13.12 3.12 49
96 19.25 -39.38 13.12 3.12 49
97 -15.75 -76.88 -28.12 3.12 49
98 29.75 -5.62 9.38 3.11 49
99 36.75 46.88 -16.88 3.10 49
100 26.25 -65.62 43.12 3.10 49
101 -33.25 -46.88 16.88 3.09 49

scrambledpix

Stat map plot for the contrast: scrambledpix
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 1.75 24.38 -13.12 5.06 49
2 -29.75 -61.88 -31.88 4.96 49
3 -22.75 -46.88 43.12 4.91 98
4 -15.75 61.88 -9.38 4.69 147
5 5.25 43.12 -28.12 4.49 49
6 -22.75 -9.38 20.62 4.29 49
7 -1.75 -35.62 5.62 4.17 98
8 50.75 16.88 -28.12 4.12 147
9 -1.75 5.62 31.88 4.04 49
10 40.25 -16.88 -39.38 3.93 98
11 -15.75 -43.12 -16.88 3.85 49
12 -64.75 -31.88 39.38 3.77 49
13 -1.75 -46.88 -9.38 3.75 49
14 50.75 5.62 -35.62 3.68 49
15 -22.75 -54.38 -9.38 3.64 147
16 22.75 -24.38 46.88 3.59 49
17 54.25 -9.38 16.88 3.55 49
18 19.25 43.12 13.12 3.51 49
19 22.75 46.88 -5.62 3.50 49
20 -29.75 -65.62 20.62 3.46 49
21 -22.75 -28.12 39.38 3.42 49
22 33.25 -20.62 43.12 3.40 49
23 -40.25 -16.88 -54.38 3.39 49
24 -26.25 -69.38 39.38 3.39 49
25 15.75 -39.38 -31.88 3.38 49
26 57.75 13.12 -9.38 3.38 49
27 -5.25 -50.62 61.88 3.33 49
28 26.25 -20.62 43.12 3.33 49
29 -22.75 -9.38 -65.62 3.31 49
30 -26.25 -65.62 16.88 3.31 49
31 -22.75 -31.88 -31.88 3.28 49
32 19.25 1.88 9.38 3.24 49
33 -26.25 13.12 -39.38 3.24 49
34 43.75 16.88 -13.12 3.24 49
35 -22.75 -24.38 -16.88 3.23 49
36 1.75 35.62 -24.38 3.23 49
37 33.25 -46.88 -24.38 3.22 49
38 -43.75 16.88 -9.38 3.22 49
39 -15.75 1.88 61.88 3.21 49
40 40.25 5.62 -39.38 3.20 49
41 1.75 -50.62 61.88 3.20 49
42 -1.75 -31.88 61.88 3.20 49
43 -33.25 13.12 28.12 3.19 49
44 -19.25 -73.12 39.38 3.19 49
45 33.25 1.88 35.62 3.19 49
46 -5.25 -35.62 -9.38 3.18 49
47 54.25 -46.88 -9.38 3.18 49
48 1.75 9.38 31.88 3.17 98
49 1.75 -43.12 -1.88 3.17 49
50 15.75 -61.88 24.38 3.17 49
51 36.75 50.62 1.88 3.16 49
52 -15.75 -58.12 20.62 3.16 49
53 -8.75 -54.38 -13.12 3.15 49
54 1.75 1.88 31.88 3.13 49
55 -26.25 39.38 35.62 3.13 49
56 -15.75 -61.88 -46.88 3.12 49
57 5.25 -28.12 20.62 3.12 49
58 -50.75 9.38 -39.38 3.12 49
59 -19.25 -58.12 -16.88 3.11 49
60 15.75 -76.88 5.62 3.11 49

face

Stat map plot for the contrast: face
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -50.75 -50.62 13.12 5.43 196
1a -47.25 -58.12 13.12 4.43
2 -47.25 -43.12 -35.62 5.08 49
3 -33.25 50.62 16.88 4.92 492
3a -40.25 46.88 13.12 4.22
4 -47.25 -39.38 16.88 4.89 98
5 -12.25 -58.12 -16.88 4.84 147
6 68.25 -9.38 -9.38 4.82 147
7 -36.75 31.88 16.88 4.66 246
8 -1.75 -39.38 5.62 4.64 98
9 -15.75 13.12 73.12 4.60 196
10 33.25 -61.88 -13.12 4.57 196
11 -43.75 -31.88 35.62 4.46 295
11a -47.25 -28.12 28.12 3.74
12 1.75 -43.12 -1.88 4.45 49
13 -47.25 24.38 20.62 4.45 49
14 40.25 -39.38 -24.38 4.30 98
15 -22.75 39.38 13.12 4.27 49
16 22.75 -50.62 -24.38 4.27 49
17 -47.25 -50.62 20.62 4.22 49
18 -47.25 -54.38 -9.38 4.19 98
19 -15.75 -13.12 24.38 4.18 98
20 -29.75 24.38 -13.12 4.15 147
21 -40.25 -43.12 -16.88 4.14 246
21a -43.75 -43.12 -9.38 3.90
22 40.25 -43.12 -9.38 4.13 98
23 -1.75 28.12 61.88 4.07 98
24 -1.75 -58.12 -16.88 4.07 147
25 -57.75 -16.88 1.88 4.06 98
26 29.75 -46.88 35.62 4.02 49
27 5.25 -58.12 -24.38 4.00 442
28 -36.75 -31.88 -46.88 4.00 49
29 -8.75 13.12 65.62 3.99 49
30 33.25 -46.88 -39.38 3.99 98
31 1.75 -43.12 -16.88 3.98 196
32 -36.75 31.88 35.62 3.95 541
33 22.75 -1.88 58.12 3.94 98
34 -19.25 -73.12 39.38 3.93 98
35 1.75 24.38 -13.12 3.92 49
36 -8.75 -39.38 -5.62 3.87 49
37 -47.25 -46.88 9.38 3.86 98
38 5.25 20.62 65.62 3.86 49
39 40.25 43.12 16.88 3.85 49
40 -26.25 -43.12 -43.12 3.83 49
41 19.25 -46.88 -20.62 3.81 246
42 -36.75 -43.12 39.38 3.80 295
43 -8.75 -28.12 61.88 3.79 49
44 -8.75 -46.88 -31.88 3.79 49
45 43.75 35.62 39.38 3.76 344
45a 40.25 28.12 39.38 3.56
46 -22.75 -46.88 -50.62 3.75 49
47 -47.25 -61.88 -5.62 3.74 49
48 -29.75 28.12 13.12 3.73 49
49 29.75 -46.88 -31.88 3.73 49
50 19.25 -16.88 39.38 3.72 49
51 -47.25 -9.38 13.12 3.71 49
52 -47.25 -46.88 -31.88 3.68 49
53 33.25 50.62 20.62 3.67 49
54 -29.75 -13.12 5.62 3.67 49
55 36.75 -46.88 9.38 3.66 49
56 -50.75 20.62 20.62 3.65 49
57 -47.25 -16.88 -35.62 3.61 49
58 36.75 -35.62 -20.62 3.61 49
59 33.25 -50.62 -20.62 3.61 147
60 33.25 -54.38 43.12 3.60 49
61 5.25 -24.38 -20.62 3.59 49
62 -47.25 -46.88 16.88 3.59 49
63 -57.75 -9.38 -1.88 3.58 49
64 -12.25 -76.88 28.12 3.58 49
65 22.75 31.88 28.12 3.57 49
66 -36.75 5.62 43.12 3.57 49
67 -33.25 39.38 54.38 3.56 49
68 -1.75 -46.88 -9.38 3.56 98
69 26.25 -28.12 24.38 3.56 49
70 29.75 -50.62 -39.38 3.56 49
71 -12.25 -39.38 58.12 3.55 49
72 29.75 -54.38 46.88 3.55 49
73 -50.75 -43.12 1.88 3.53 147
74 -36.75 20.62 50.62 3.53 49
75 19.25 -1.88 50.62 3.52 49
76 -57.75 31.88 31.88 3.52 49
77 -43.75 -43.12 46.88 3.51 49
78 -29.75 5.62 58.12 3.51 98
79 26.25 1.88 13.12 3.51 49
80 5.25 -65.62 13.12 3.49 49
81 29.75 -46.88 -43.12 3.47 49
82 33.25 -43.12 -24.38 3.47 49
83 -47.25 -16.88 -43.12 3.46 49
84 -36.75 -46.88 50.62 3.45 49
85 -54.25 -9.38 -31.88 3.44 49
86 -33.25 31.88 46.88 3.43 49
87 -26.25 -84.38 -9.38 3.43 98
88 12.25 28.12 61.88 3.42 98
89 -15.75 16.88 16.88 3.41 49
90 -33.25 16.88 50.62 3.41 49
91 -5.25 61.88 -9.38 3.41 49
92 -47.25 -61.88 -28.12 3.41 49
93 -33.25 -9.38 -28.12 3.41 49
94 -40.25 50.62 9.38 3.41 49
95 -19.25 -61.88 -9.38 3.40 49
96 22.75 -24.38 -58.12 3.39 49
97 -29.75 35.62 -1.88 3.39 49
98 -54.25 -20.62 -39.38 3.39 49
99 40.25 -46.88 -20.62 3.39 49
100 8.75 -58.12 -28.12 3.38 98
101 -47.25 -46.88 -1.88 3.38 49
102 36.75 54.38 24.38 3.38 98
103 -29.75 31.88 -9.38 3.37 49
104 40.25 -35.62 -43.12 3.37 49
105 -50.75 -58.12 -13.12 3.36 49
106 36.75 61.88 28.12 3.35 49
107 -47.25 58.12 -1.88 3.35 49
108 -47.25 24.38 28.12 3.34 98
109 -47.25 -9.38 5.62 3.34 49
110 -50.75 -35.62 43.12 3.34 49
111 -47.25 -46.88 -58.12 3.34 49
112 68.25 -28.12 16.88 3.33 98
113 47.25 35.62 13.12 3.33 49
114 19.25 5.62 13.12 3.32 49
115 29.75 -46.88 -20.62 3.32 49
116 -8.75 -13.12 20.62 3.32 49
117 5.25 31.88 -35.62 3.32 49
118 15.75 -54.38 -20.62 3.32 49
119 43.75 9.38 50.62 3.32 49
120 15.75 5.62 9.38 3.31 49
121 8.75 -1.88 9.38 3.31 49
122 33.25 20.62 43.12 3.31 49
123 43.75 -54.38 9.38 3.30 98
124 -40.25 39.38 43.12 3.30 49
125 -47.25 -58.12 -31.88 3.30 98
126 12.25 -88.12 5.62 3.30 49
127 40.25 -69.38 -16.88 3.30 49
128 -43.75 -31.88 -9.38 3.29 49
129 50.75 1.88 43.12 3.29 49
130 43.75 16.88 31.88 3.29 49
131 -47.25 -50.62 31.88 3.29 49
132 15.75 13.12 43.12 3.29 49
133 1.75 -43.12 5.62 3.28 49
134 -50.75 -28.12 35.62 3.28 49
135 -54.25 -43.12 20.62 3.28 49
136 -26.25 13.12 61.88 3.28 98
137 -29.75 -50.62 1.88 3.27 49
138 29.75 -35.62 35.62 3.27 49
139 43.75 13.12 46.88 3.26 49
140 22.75 -43.12 54.38 3.26 49
141 -40.25 20.62 24.38 3.26 49
142 -33.25 58.12 20.62 3.26 49
143 29.75 9.38 13.12 3.25 49
144 -47.25 -31.88 -50.62 3.23 49
145 1.75 13.12 61.88 3.23 49
146 -12.25 -1.88 28.12 3.23 49
147 26.25 -43.12 35.62 3.23 49
148 -1.75 -31.88 9.38 3.22 49
149 -57.75 9.38 -16.88 3.22 49
150 -47.25 -61.88 20.62 3.22 49
151 12.25 -65.62 54.38 3.22 98
152 26.25 -13.12 31.88 3.22 49
153 26.25 -9.38 35.62 3.22 49
154 -15.75 -46.88 -1.88 3.22 49
155 -19.25 -39.38 1.88 3.22 49
156 -8.75 20.62 58.12 3.21 49
157 -22.75 46.88 13.12 3.21 49
158 15.75 13.12 28.12 3.21 49
159 57.75 -35.62 43.12 3.21 49
160 26.25 -28.12 69.38 3.20 49
161 -29.75 20.62 -46.88 3.20 49
162 1.75 -69.38 46.88 3.20 49
163 -33.25 -61.88 5.62 3.19 49
164 -8.75 -58.12 -43.12 3.19 49
165 -36.75 -39.38 46.88 3.19 49
166 -61.25 -46.88 20.62 3.18 49
167 12.25 1.88 5.62 3.18 49
168 -15.75 54.38 54.38 3.18 49
169 -12.25 5.62 65.62 3.17 49
170 40.25 -43.12 5.62 3.17 49
171 -54.25 -35.62 -50.62 3.17 49
172 5.25 -9.38 69.38 3.17 49
173 -1.75 39.38 -20.62 3.17 49
174 -15.75 84.38 20.62 3.17 49
175 1.75 -58.12 -13.12 3.16 49
176 40.25 -35.62 28.12 3.16 49
177 33.25 31.88 35.62 3.16 49
178 1.75 31.88 -24.38 3.16 49
179 12.25 -54.38 -16.88 3.15 49
180 -47.25 -28.12 5.62 3.15 49
181 -40.25 -65.62 -16.88 3.15 49
182 36.75 -20.62 -9.38 3.15 49
183 -47.25 -50.62 5.62 3.15 49
184 -33.25 -54.38 43.12 3.14 49
185 -8.75 -39.38 -24.38 3.14 49
186 -1.75 -50.62 -39.38 3.14 49
187 -15.75 -73.12 16.88 3.14 49
188 19.25 -46.88 -35.62 3.14 49
189 19.25 -5.62 28.12 3.14 49
190 -47.25 -39.38 31.88 3.13 49
191 -50.75 -39.38 -24.38 3.13 49
192 -26.25 -39.38 39.38 3.13 49
193 -22.75 9.38 54.38 3.13 49
194 -50.75 39.38 9.38 3.13 49
195 -40.25 -16.88 1.88 3.13 49
196 29.75 -1.88 46.88 3.12 49
197 -36.75 -65.62 -31.88 3.11 49
198 -26.25 16.88 -16.88 3.11 49
199 -12.25 -61.88 54.38 3.11 49
200 -5.25 16.88 35.62 3.10 49
201 -40.25 24.38 46.88 3.10 49
202 33.25 -50.62 46.88 3.10 49
203 -29.75 -16.88 16.88 3.10 49
204 47.25 5.62 50.62 3.10 49
205 -33.25 -46.88 61.88 3.09 49

shoe

Stat map plot for the contrast: shoe
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 19.25 73.12 20.62 4.65 49
2 22.75 -9.38 35.62 4.48 98
3 19.25 -20.62 -28.12 4.08 49
4 12.25 5.62 31.88 3.97 49
5 26.25 35.62 28.12 3.97 49
6 61.25 28.12 31.88 3.87 147
7 15.75 16.88 58.12 3.83 49
8 -5.25 -76.88 -28.12 3.74 49
9 36.75 46.88 -16.88 3.71 49
10 -19.25 -28.12 35.62 3.64 49
11 26.25 -46.88 -24.38 3.61 49
12 -12.25 39.38 65.62 3.61 49
13 -29.75 9.38 35.62 3.60 49
14 -8.75 84.38 20.62 3.60 98
15 -54.25 -65.62 16.88 3.59 49
16 -26.25 -13.12 -43.12 3.58 49
17 19.25 -28.12 -54.38 3.57 49
18 -12.25 1.88 -69.38 3.56 49
19 47.25 -28.12 -5.62 3.55 98
20 22.75 -69.38 -28.12 3.53 49
21 33.25 9.38 61.88 3.50 49
22 -8.75 20.62 73.12 3.49 98
23 22.75 61.88 31.88 3.49 147
24 40.25 -54.38 39.38 3.47 49
25 1.75 -24.38 -39.38 3.46 49
26 5.25 -13.12 24.38 3.46 49
27 -68.25 -20.62 24.38 3.45 49
28 -12.25 39.38 24.38 3.42 49
29 50.75 -35.62 -35.62 3.41 49
30 -1.75 -28.12 -73.12 3.39 49
31 29.75 24.38 -28.12 3.38 98
32 22.75 -54.38 -43.12 3.35 49
33 -12.25 -46.88 -43.12 3.28 49
34 -15.75 -24.38 35.62 3.27 49
35 47.25 -31.88 -58.12 3.26 49
36 -8.75 73.12 31.88 3.26 49
37 -8.75 -1.88 -58.12 3.26 49
38 -8.75 -46.88 -39.38 3.26 49
39 12.25 -28.12 28.12 3.25 49
40 -19.25 20.62 43.12 3.24 49
41 -36.75 5.62 31.88 3.24 49
42 -68.25 -9.38 9.38 3.21 49
43 22.75 -65.62 9.38 3.21 49
44 -47.25 -16.88 -24.38 3.21 49
45 33.25 -43.12 -35.62 3.19 49
46 -40.25 -9.38 -50.62 3.19 49
47 -40.25 -16.88 -35.62 3.18 49
48 -54.25 -35.62 -1.88 3.18 98
49 15.75 -24.38 -73.12 3.17 49
50 -33.25 31.88 58.12 3.16 49
51 -68.25 -16.88 28.12 3.16 49
52 43.75 46.88 -9.38 3.16 49
53 68.25 5.62 -13.12 3.15 49
54 5.25 39.38 50.62 3.14 49
55 36.75 -35.62 -46.88 3.14 98
56 -5.25 -54.38 -50.62 3.11 49
57 -19.25 16.88 -20.62 3.10 49

cat

Stat map plot for the contrast: cat
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 12.25 -61.88 -31.88 5.00 590
1a 5.25 -61.88 -24.38 4.34
2 -40.25 -65.62 13.12 4.41 196
3 -29.75 39.38 54.38 4.32 98
4 -12.25 -58.12 -16.88 4.29 49
5 -12.25 -76.88 31.88 4.27 98
6 43.75 -5.62 16.88 4.11 196
7 22.75 -24.38 -58.12 4.05 49
8 19.25 -31.88 -69.38 4.01 98
9 43.75 1.88 9.38 3.94 295
10 5.25 -80.62 9.38 3.90 98
11 61.25 -31.88 20.62 3.86 49
12 -12.25 -20.62 -58.12 3.86 98
13 1.75 35.62 -13.12 3.86 49
14 -29.75 35.62 50.62 3.83 49
15 -36.75 -50.62 -39.38 3.82 98
16 33.25 -1.88 46.88 3.80 49
17 50.75 1.88 -24.38 3.79 49
18 47.25 1.88 -46.88 3.79 49
19 50.75 28.12 24.38 3.78 49
20 -5.25 -50.62 -13.12 3.76 49
21 22.75 -61.88 -54.38 3.76 49
22 -12.25 -73.12 -31.88 3.73 49
23 36.75 28.12 43.12 3.72 98
24 36.75 69.38 5.62 3.71 49
25 -1.75 50.62 -9.38 3.70 98
26 5.25 -31.88 54.38 3.66 49
27 36.75 28.12 -20.62 3.62 49
28 -26.25 -80.62 9.38 3.61 98
29 8.75 -65.62 -24.38 3.60 49
30 -8.75 -46.88 -28.12 3.60 49
31 50.75 9.38 -35.62 3.60 49
32 43.75 5.62 1.88 3.59 49
33 -36.75 46.88 39.38 3.58 49
34 15.75 -80.62 -31.88 3.57 49
35 -54.25 -50.62 5.62 3.56 98
36 36.75 9.38 -35.62 3.55 49
37 29.75 -35.62 -50.62 3.53 49
38 -43.75 -65.62 5.62 3.53 49
39 15.75 -50.62 -39.38 3.50 49
40 61.25 -31.88 43.12 3.50 49
41 12.25 -54.38 -43.12 3.49 49
42 5.25 -61.88 -39.38 3.49 49
43 33.25 -54.38 43.12 3.49 49
44 -64.75 -9.38 -24.38 3.48 49
45 -54.25 -50.62 39.38 3.48 49
46 -40.25 -46.88 50.62 3.48 98
47 8.75 16.88 -16.88 3.48 98
48 -29.75 -46.88 5.62 3.47 49
49 12.25 -39.38 -31.88 3.44 49
50 -40.25 -5.62 50.62 3.44 49
51 64.75 20.62 9.38 3.43 49
52 5.25 -24.38 -73.12 3.42 49
53 12.25 -43.12 1.88 3.42 49
54 -19.25 16.88 69.38 3.42 49
55 -29.75 -54.38 -35.62 3.42 49
56 36.75 28.12 35.62 3.42 49
57 -64.75 -31.88 16.88 3.38 49
58 5.25 43.12 50.62 3.37 49
59 15.75 39.38 -20.62 3.37 49
60 29.75 9.38 -31.88 3.36 49
61 -36.75 -50.62 -20.62 3.35 98
62 -47.25 -43.12 43.12 3.35 98
63 -40.25 -46.88 16.88 3.35 49
64 -43.75 -1.88 -28.12 3.34 49
65 -40.25 -1.88 -31.88 3.34 49
66 12.25 5.62 5.62 3.34 49
67 -64.75 -16.88 24.38 3.33 98
68 -36.75 -76.88 5.62 3.33 98
69 43.75 31.88 39.38 3.33 49
70 -47.25 -50.62 46.88 3.33 98
71 -40.25 -69.38 35.62 3.31 49
72 -29.75 35.62 58.12 3.30 98
73 -22.75 76.88 5.62 3.29 49
74 47.25 13.12 43.12 3.29 98
75 -64.75 -9.38 9.38 3.27 49
76 15.75 -16.88 46.88 3.27 49
77 -8.75 1.88 -28.12 3.27 49
78 -26.25 -46.88 -28.12 3.27 49
79 29.75 -43.12 50.62 3.27 49
80 -57.75 -50.62 13.12 3.26 49
81 -43.75 -43.12 50.62 3.26 49
82 40.25 -5.62 -5.62 3.25 49
83 -33.25 -50.62 58.12 3.24 49
84 12.25 -84.38 -24.38 3.24 49
85 -43.75 13.12 -9.38 3.23 49
86 -50.75 -65.62 -13.12 3.23 49
87 5.25 -54.38 -46.88 3.22 49
88 47.25 9.38 -13.12 3.22 49
89 -43.75 -31.88 35.62 3.21 49
90 -15.75 -84.38 -16.88 3.21 49
91 15.75 -31.88 -61.88 3.21 49
92 -26.25 -54.38 13.12 3.20 49
93 1.75 -50.62 -16.88 3.20 49
94 33.25 -46.88 -24.38 3.20 49
95 50.75 -1.88 -28.12 3.20 49
96 -50.75 -35.62 -46.88 3.19 49
97 1.75 46.88 -9.38 3.18 49
98 -40.25 -43.12 54.38 3.18 49
99 26.25 -65.62 -20.62 3.18 49
100 -47.25 -24.38 54.38 3.17 49
101 -1.75 1.88 -61.88 3.17 49
102 -8.75 -61.88 20.62 3.17 49
103 5.25 20.62 50.62 3.17 49
104 33.25 -54.38 -24.38 3.16 49
105 -8.75 -35.62 -24.38 3.16 49
106 -22.75 35.62 61.88 3.15 49
107 12.25 54.38 58.12 3.14 49
108 47.25 20.62 50.62 3.14 49
109 29.75 1.88 -31.88 3.13 49
110 8.75 -54.38 -39.38 3.12 49
111 40.25 -20.62 -39.38 3.12 49
112 36.75 -9.38 50.62 3.11 49
113 -40.25 43.12 43.12 3.10 49
114 50.75 24.38 39.38 3.10 49
115 36.75 -24.38 -54.38 3.10 49
116 -29.75 -76.88 9.38 3.09 49

scissors

Stat map plot for the contrast: scissors
Cluster Table
Height control fpr
α 0.001
Threshold (computed) 3.09
Cluster size threshold (voxels) 0
Minimum distance (mm) 8.0
Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -50.75 20.62 -24.38 6.02 1181
2 -12.25 20.62 -46.88 5.79 492
2a -22.75 16.88 -43.12 4.73
3 -19.25 84.38 20.62 5.60 295
4 -26.25 24.38 28.12 5.28 196
5 29.75 5.62 -5.62 5.26 147
6 36.75 20.62 -31.88 5.18 246
7 47.25 24.38 -1.88 5.12 147
8 12.25 13.12 -43.12 5.09 442
9 -22.75 -58.12 -50.62 5.08 442
9a -22.75 -46.88 -50.62 4.60
10 -19.25 61.88 50.62 5.05 49
11 -50.75 -9.38 -20.62 5.01 295
12 50.75 31.88 -31.88 4.97 49
13 -19.25 31.88 -35.62 4.91 196
14 1.75 -1.88 -61.88 4.86 295
15 33.25 5.62 -46.88 4.82 49
16 -12.25 1.88 -28.12 4.76 49
17 12.25 -61.88 -46.88 4.76 49
18 1.75 -28.12 -61.88 4.68 98
19 12.25 -35.62 -69.38 4.66 147
20 22.75 -58.12 -50.62 4.61 98
21 -54.25 -39.38 -31.88 4.60 49
22 1.75 13.12 -16.88 4.54 98
23 47.25 24.38 9.38 4.54 49
24 26.25 -46.88 1.88 4.54 98
25 40.25 5.62 31.88 4.53 98
26 -15.75 -43.12 -46.88 4.53 98
27 40.25 -58.12 -5.62 4.50 147
28 19.25 16.88 -46.88 4.50 49
29 5.25 24.38 -46.88 4.47 442
29a -1.75 28.12 -39.38 3.59
30 -5.25 -16.88 -39.38 4.45 98
31 50.75 24.38 -35.62 4.41 147
32 12.25 80.62 35.62 4.41 196
33 33.25 -35.62 -35.62 4.37 393
33a 33.25 -39.38 -43.12 3.60
34 1.75 1.88 31.88 4.37 246
35 -12.25 76.88 20.62 4.36 98
36 47.25 -5.62 20.62 4.36 344
37 19.25 -46.88 -35.62 4.34 98
38 29.75 -1.88 24.38 4.33 49
39 -12.25 9.38 -58.12 4.29 98
40 54.25 5.62 50.62 4.29 344
40a 54.25 1.88 43.12 4.27
41 15.75 -35.62 -73.12 4.28 49
42 19.25 80.62 1.88 4.28 147
43 15.75 76.88 28.12 4.26 49
44 -29.75 76.88 20.62 4.26 49
45 -54.25 9.38 -16.88 4.26 49
46 -1.75 -31.88 9.38 4.26 246
46a -1.75 -39.38 5.62 4.21
47 -22.75 -5.62 -20.62 4.25 49
48 -40.25 61.88 5.62 4.24 98
49 -47.25 24.38 20.62 4.22 49
50 26.25 13.12 -39.38 4.22 49
51 -8.75 28.12 54.38 4.17 196
52 40.25 -1.88 61.88 4.17 246
52a 40.25 -9.38 58.12 3.83
53 36.75 31.88 -39.38 4.17 295
54 -36.75 -1.88 -20.62 4.17 98
55 -5.25 -9.38 31.88 4.14 49
56 22.75 -54.38 -43.12 4.14 49
57 -29.75 20.62 -46.88 4.13 49
58 22.75 -1.88 9.38 4.11 49
59 -26.25 80.62 16.88 4.11 295
60 29.75 -46.88 -61.88 4.10 49
61 15.75 -28.12 -54.38 4.10 49
62 33.25 24.38 -43.12 4.08 98
63 -40.25 -16.88 -65.62 4.07 49
64 -26.25 76.88 24.38 4.05 196
65 19.25 -5.62 -35.62 4.04 49
66 54.25 1.88 35.62 4.03 246
67 12.25 24.38 -35.62 4.03 98
68 -26.25 -13.12 1.88 4.02 49
69 -5.25 80.62 31.88 4.02 196
70 -19.25 50.62 13.12 4.02 49
71 40.25 -43.12 -5.62 4.01 49
72 43.75 -31.88 -13.12 4.01 98
73 15.75 5.62 9.38 4.01 49
74 -33.25 -65.62 -16.88 4.00 49
75 26.25 -50.62 -54.38 4.00 98
76 33.25 -5.62 -1.88 3.99 98
77 40.25 -39.38 58.12 3.98 49
78 22.75 -43.12 -61.88 3.98 98
79 -19.25 20.62 24.38 3.98 49
80 57.75 -20.62 28.12 3.97 49
81 -5.25 84.38 1.88 3.96 49
82 40.25 -24.38 -35.62 3.96 49
83 -19.25 9.38 -35.62 3.95 49
84 12.25 80.62 -5.62 3.94 49
85 -5.25 -28.12 -76.88 3.94 147
86 50.75 50.62 20.62 3.93 98
87 19.25 -16.88 -54.38 3.93 49
88 33.25 -39.38 24.38 3.93 49
89 40.25 28.12 -43.12 3.92 196
90 -26.25 16.88 28.12 3.92 49
91 1.75 39.38 -16.88 3.92 49
92 -26.25 -24.38 20.62 3.91 49
93 -15.75 -9.38 28.12 3.91 98
94 -8.75 24.38 -35.62 3.90 98
95 50.75 -16.88 46.88 3.89 49
96 -15.75 76.88 31.88 3.89 49
97 1.75 -28.12 -76.88 3.89 49
98 47.25 16.88 -20.62 3.89 49
99 19.25 -28.12 73.12 3.87 49
100 57.75 -13.12 39.38 3.87 49
101 -8.75 84.38 20.62 3.87 98
102 29.75 76.88 13.12 3.87 49
103 40.25 13.12 -39.38 3.87 49
104 33.25 -69.38 -13.12 3.87 147
105 19.25 54.38 50.62 3.85 49
106 -12.25 -50.62 -50.62 3.85 49
107 -19.25 -1.88 -35.62 3.85 49
108 29.75 -50.62 -50.62 3.84 49
109 12.25 -61.88 9.38 3.84 49
110 -29.75 13.12 61.88 3.83 196
111 5.25 -1.88 5.62 3.83 98
112 15.75 -16.88 46.88 3.83 49
113 -1.75 -1.88 -76.88 3.82 196
114 -36.75 65.62 20.62 3.82 98
115 33.25 -39.38 -20.62 3.81 49
116 29.75 65.62 43.12 3.79 49
117 -50.75 -1.88 20.62 3.79 49
118 50.75 -39.38 -16.88 3.79 49
119 -12.25 -43.12 -13.12 3.78 49
120 -22.75 58.12 -20.62 3.77 246
121 5.25 39.38 -20.62 3.77 49
122 -26.25 31.88 -39.38 3.76 49
123 -1.75 -13.12 -54.38 3.76 196
124 -33.25 -58.12 -31.88 3.75 98
125 15.75 88.12 9.38 3.75 98
126 43.75 13.12 -28.12 3.75 98
127 26.25 -16.88 -16.88 3.75 98
128 -19.25 31.88 -28.12 3.74 98
129 5.25 9.38 -58.12 3.73 196
130 -8.75 9.38 65.62 3.73 49
131 -29.75 -69.38 9.38 3.73 98
132 -64.75 -5.62 5.62 3.71 98
133 12.25 -31.88 -46.88 3.71 49
134 15.75 50.62 -9.38 3.71 49
135 -40.25 -9.38 -5.62 3.70 49
136 33.25 -20.62 43.12 3.70 49
137 -12.25 -50.62 -13.12 3.69 49
138 26.25 -13.12 13.12 3.69 49
139 -5.25 80.62 13.12 3.68 49
140 -26.25 16.88 -16.88 3.67 49
141 19.25 -1.88 -1.88 3.66 49
142 19.25 16.88 -35.62 3.66 49
143 -1.75 73.12 35.62 3.66 49
144 29.75 -54.38 -61.88 3.65 49
145 1.75 -9.38 1.88 3.65 49
146 15.75 73.12 20.62 3.65 98
147 33.25 -50.62 -20.62 3.65 49
148 12.25 -35.62 -24.38 3.65 49
149 15.75 24.38 69.38 3.64 49
150 -47.25 -5.62 -28.12 3.64 49
151 -1.75 1.88 13.12 3.64 49
152 -40.25 69.38 13.12 3.63 49
153 12.25 -28.12 -31.88 3.62 49
154 8.75 1.88 24.38 3.62 49
155 29.75 -9.38 9.38 3.62 49
156 -15.75 -65.62 5.62 3.61 49
157 -26.25 -80.62 -5.62 3.61 49
158 33.25 5.62 16.88 3.60 147
159 33.25 -5.62 24.38 3.60 98
160 57.75 -1.88 5.62 3.60 49
161 15.75 -50.62 -35.62 3.60 49
162 33.25 24.38 61.88 3.60 49
163 -1.75 -35.62 -65.62 3.58 49
164 22.75 -20.62 20.62 3.58 49
165 -8.75 24.38 43.12 3.58 49
166 40.25 -13.12 46.88 3.58 49
167 -5.25 -20.62 54.38 3.58 98
168 -1.75 -13.12 31.88 3.57 49
169 -47.25 20.62 43.12 3.57 147
170 -33.25 69.38 20.62 3.56 98
171 57.75 -24.38 5.62 3.56 49
172 5.25 -65.62 20.62 3.56 49
173 26.25 -16.88 -35.62 3.55 98
174 -1.75 -46.88 -1.88 3.55 98
175 -50.75 13.12 20.62 3.55 49
176 40.25 69.38 16.88 3.55 98
177 1.75 16.88 -20.62 3.55 49
178 -29.75 20.62 20.62 3.54 49
179 -29.75 31.88 -9.38 3.54 49
180 40.25 -16.88 9.38 3.54 49
181 -12.25 88.12 9.38 3.54 49
182 -5.25 5.62 39.38 3.54 49
183 -1.75 -13.12 -5.62 3.54 98
184 -8.75 80.62 5.62 3.54 98
185 -50.75 -13.12 5.62 3.54 49
186 57.75 16.88 16.88 3.53 49
187 1.75 13.12 31.88 3.53 147
188 -33.25 39.38 54.38 3.53 49
189 -5.25 28.12 61.88 3.52 49
190 -43.75 -24.38 35.62 3.52 98
191 1.75 65.62 46.88 3.52 49
192 -5.25 5.62 -69.38 3.52 49
193 -22.75 -39.38 -54.38 3.51 49
194 33.25 -28.12 -39.38 3.51 98
195 -1.75 -5.62 -80.62 3.51 98
196 26.25 28.12 -43.12 3.51 49
197 33.25 31.88 -20.62 3.50 49
198 -33.25 73.12 9.38 3.50 49
199 -1.75 20.62 54.38 3.50 49
200 12.25 -1.88 43.12 3.50 49
201 57.75 -28.12 9.38 3.50 49
202 -12.25 1.88 9.38 3.49 49
203 -40.25 43.12 -31.88 3.49 49
204 43.75 -9.38 -16.88 3.49 49
205 47.25 -9.38 54.38 3.49 49
206 -57.75 -5.62 -1.88 3.48 147
207 15.75 88.12 16.88 3.47 49
208 54.25 9.38 28.12 3.47 98
209 -5.25 39.38 58.12 3.46 49
210 50.75 16.88 -5.62 3.46 49
211 15.75 46.88 -20.62 3.46 49
212 50.75 54.38 -5.62 3.46 49
213 33.25 -13.12 50.62 3.45 49
214 57.75 -24.38 -13.12 3.45 98
215 -22.75 -9.38 39.38 3.45 49
216 -19.25 -5.62 16.88 3.45 49
217 19.25 -5.62 61.88 3.45 49
218 -43.75 16.88 39.38 3.45 49
219 -1.75 -73.12 -31.88 3.44 49
220 -15.75 1.88 28.12 3.43 49
221 -54.25 20.62 -16.88 3.43 49
222 40.25 16.88 61.88 3.43 49
223 8.75 -1.88 28.12 3.43 49
224 47.25 -9.38 28.12 3.42 49
225 33.25 -13.12 -61.88 3.42 49
226 -8.75 20.62 58.12 3.42 49
227 -36.75 69.38 16.88 3.42 49
228 -22.75 -88.12 -1.88 3.42 49
229 33.25 -1.88 -24.38 3.41 49
230 26.25 -61.88 -16.88 3.41 49
231 -12.25 46.88 -16.88 3.41 49
232 -47.25 -16.88 -39.38 3.40 49
233 33.25 24.38 31.88 3.40 49
234 43.75 -61.88 5.62 3.40 98
235 -40.25 -16.88 -20.62 3.40 49
236 50.75 -16.88 58.12 3.40 49
237 22.75 -20.62 -5.62 3.40 49
238 1.75 76.88 16.88 3.40 49
239 33.25 -20.62 -58.12 3.40 49
240 22.75 -35.62 -9.38 3.39 49
241 36.75 1.88 65.62 3.39 49
242 -22.75 -31.88 -43.12 3.39 98
243 -15.75 -46.88 -43.12 3.39 98
244 36.75 39.38 16.88 3.38 49
245 47.25 -16.88 31.88 3.38 49
246 12.25 -24.38 -50.62 3.38 49
247 8.75 76.88 16.88 3.37 49
248 29.75 -58.12 -46.88 3.37 49
249 -47.25 20.62 -16.88 3.37 49
250 22.75 -43.12 54.38 3.37 49
251 -5.25 -1.88 -28.12 3.37 147
252 -8.75 -5.62 -58.12 3.36 49
253 57.75 -9.38 43.12 3.35 49
254 -22.75 39.38 31.88 3.35 49
255 -8.75 5.62 73.12 3.35 98
256 1.75 -39.38 -20.62 3.34 49
257 54.25 -16.88 -13.12 3.34 98
258 -36.75 24.38 -39.38 3.34 49
259 -43.75 24.38 -1.88 3.34 49
260 47.25 -5.62 50.62 3.34 49
261 57.75 -31.88 46.88 3.33 49
262 50.75 -54.38 9.38 3.33 49
263 -33.25 28.12 -39.38 3.33 49
264 5.25 35.62 -9.38 3.32 49
265 5.25 -50.62 -5.62 3.31 49
266 -57.75 -9.38 -13.12 3.31 49
267 40.25 -43.12 54.38 3.31 98
268 -40.25 -31.88 39.38 3.30 49
269 22.75 -13.12 -20.62 3.30 49
270 33.25 39.38 -16.88 3.30 49
271 8.75 46.88 -20.62 3.30 49
272 -50.75 20.62 20.62 3.30 49
273 -43.75 16.88 58.12 3.30 49
274 -19.25 -13.12 -46.88 3.30 49
275 43.75 -50.62 -5.62 3.29 49
276 12.25 1.88 -69.38 3.29 49
277 1.75 -35.62 -13.12 3.29 49
278 -33.25 9.38 35.62 3.29 49
279 -47.25 -24.38 -1.88 3.29 49
280 29.75 58.12 -16.88 3.29 49
281 -8.75 -46.88 -9.38 3.29 49
282 1.75 -1.88 -54.38 3.28 49
283 29.75 31.88 39.38 3.28 49
284 36.75 -50.62 -5.62 3.28 49
285 33.25 -16.88 65.62 3.28 147
286 -43.75 -31.88 54.38 3.28 49
287 22.75 43.12 -9.38 3.28 49
288 8.75 -58.12 -16.88 3.27 49
289 -12.25 -1.88 -58.12 3.27 49
290 -1.75 -58.12 -43.12 3.27 49
291 15.75 -76.88 -16.88 3.27 49
292 15.75 -20.62 -20.62 3.27 49
293 -50.75 24.38 46.88 3.27 49
294 33.25 -5.62 50.62 3.27 49
295 29.75 5.62 13.12 3.27 49
296 15.75 -39.38 24.38 3.27 49
297 8.75 -9.38 -76.88 3.26 49
298 -26.25 65.62 35.62 3.26 49
299 -8.75 16.88 -43.12 3.26 49
300 15.75 -50.62 46.88 3.26 49
301 22.75 -28.12 69.38 3.26 49
302 -5.25 84.38 9.38 3.25 49
303 -19.25 73.12 31.88 3.25 49
304 15.75 16.88 28.12 3.25 49
305 15.75 13.12 9.38 3.25 49
306 1.75 -43.12 5.62 3.25 49
307 43.75 54.38 35.62 3.24 49
308 8.75 -43.12 -73.12 3.24 49
309 -26.25 -28.12 31.88 3.23 49
310 -26.25 -1.88 -9.38 3.23 49
311 -43.75 16.88 -1.88 3.22 49
312 -33.25 -24.38 -43.12 3.22 49
313 19.25 46.88 39.38 3.22 98
314 -12.25 -5.62 28.12 3.22 98
315 29.75 -35.62 -20.62 3.22 49
316 1.75 35.62 -24.38 3.22 49
317 -12.25 65.62 -9.38 3.21 49
318 47.25 9.38 -1.88 3.21 49
319 5.25 -5.62 -1.88 3.21 49
320 26.25 -50.62 -16.88 3.21 49
321 22.75 -39.38 13.12 3.21 49
322 -1.75 -54.38 -61.88 3.21 49
323 47.25 -28.12 -20.62 3.21 98
324 40.25 -28.12 13.12 3.20 49
325 22.75 -54.38 -61.88 3.20 49
326 19.25 28.12 -43.12 3.20 49
327 33.25 20.62 -13.12 3.20 49
328 43.75 -43.12 9.38 3.20 49
329 -40.25 -73.12 -31.88 3.19 49
330 22.75 84.38 1.88 3.19 49
331 -19.25 28.12 39.38 3.19 49
332 -29.75 -16.88 -1.88 3.19 49
333 29.75 -9.38 -28.12 3.19 49
334 12.25 -9.38 43.12 3.19 49
335 19.25 -20.62 -28.12 3.19 49
336 -26.25 -39.38 -43.12 3.19 49
337 -8.75 20.62 31.88 3.19 49
338 33.25 -20.62 -20.62 3.19 49
339 -33.25 -84.38 -1.88 3.19 49
340 -26.25 43.12 -28.12 3.19 49
341 -57.75 -5.62 -16.88 3.18 49
342 -15.75 -9.38 35.62 3.18 98
343 19.25 -50.62 -13.12 3.18 49
344 -1.75 -1.88 -20.62 3.18 49
345 29.75 -1.88 13.12 3.18 49
346 33.25 31.88 -9.38 3.17 49
347 15.75 -20.62 65.62 3.17 49
348 -5.25 -9.38 69.38 3.17 49
349 -54.25 -9.38 -31.88 3.17 49
350 -26.25 61.88 -5.62 3.16 49
351 -19.25 -39.38 24.38 3.16 49
352 1.75 -5.62 -20.62 3.16 49
353 -33.25 31.88 13.12 3.16 49
354 15.75 -5.62 -1.88 3.15 49
355 -29.75 -13.12 -35.62 3.15 49
356 43.75 -46.88 -13.12 3.15 49
357 -12.25 -1.88 -20.62 3.15 49
358 -22.75 -9.38 -9.38 3.15 49
359 -26.25 9.38 20.62 3.15 49
360 47.25 24.38 -13.12 3.15 49
361 26.25 24.38 35.62 3.14 49
362 -22.75 -46.88 -31.88 3.14 49
363 -19.25 -1.88 -20.62 3.14 49
364 -19.25 -9.38 5.62 3.14 49
365 -19.25 9.38 9.38 3.14 49
366 -29.75 35.62 54.38 3.14 49
367 50.75 35.62 13.12 3.14 49
368 29.75 -43.12 50.62 3.13 49
369 26.25 1.88 24.38 3.13 49
370 -26.25 -50.62 -39.38 3.13 49
371 -19.25 -20.62 5.62 3.12 49
372 -40.25 39.38 43.12 3.12 49
373 36.75 73.12 13.12 3.12 49
374 -15.75 13.12 73.12 3.12 49
375 29.75 -24.38 69.38 3.12 49
376 -5.25 -39.38 -9.38 3.11 49
377 12.25 -20.62 20.62 3.11 49
378 8.75 -31.88 20.62 3.11 49
379 -50.75 16.88 35.62 3.11 49
380 -43.75 13.12 35.62 3.11 49
381 8.75 31.88 61.88 3.11 49
382 5.25 -24.38 69.38 3.11 49
383 47.25 9.38 -16.88 3.11 49
384 -54.25 -1.88 13.12 3.11 49
385 29.75 -1.88 1.88 3.11 49
386 -1.75 28.12 -5.62 3.11 98
387 19.25 -76.88 -9.38 3.10 49
388 15.75 -69.38 54.38 3.10 49
389 19.25 5.62 5.62 3.10 49
390 43.75 24.38 -9.38 3.10 49
391 -19.25 -31.88 46.88 3.10 49
392 -5.25 -46.88 -35.62 3.10 49
393 57.75 -13.12 20.62 3.09 49
394 54.25 1.88 -35.62 3.09 49
395 1.75 80.62 13.12 3.09 49
396 -15.75 13.12 -35.62 3.09 49
397 15.75 -46.88 31.88 3.09 49

About

  • Date preprocessed:


In a jupyter notebook, the report will be automatically inserted, as above.

# We can access the report via a browser:
# report.open_in_browser()

# Or we can save as an html file.
from pathlib import Path

output_dir = Path.cwd() / "results" / "plot_haxby_glm_decoding"
output_dir.mkdir(exist_ok=True, parents=True)
report.save_as_html(output_dir / "report.html")

Build the decoding pipeline

To define the decoding pipeline we use Decoder object, we choose :

  • a prediction model, here a Support Vector Classifier, with a linear kernel

  • the mask to use, here a ventral temporal ROI in the visual cortex

  • although it usually helps to decode better, z-maps time series don’t need to be rescaled to a 0 mean, variance of 1 so we use standardize=False.

  • we use univariate feature selection to reduce the dimension of the problem keeping only 5% of voxels which are most informative.

  • a cross-validation scheme, here we use LeaveOneGroupOut cross-validation on the runs which corresponds to a leave-one-run-out

We fit directly this pipeline on the Niimgs outputs of the GLM, with corresponding conditions labels and run labels (for the cross validation).

from sklearn.model_selection import LeaveOneGroupOut

from nilearn.decoding import Decoder

decoder = Decoder(
    estimator="svc",
    mask=haxby_dataset.mask,
    standardize=False,
    screening_percentile=5,
    cv=LeaveOneGroupOut(),
    verbose=1,
)
decoder.fit(z_maps, conditions_label, groups=run_label)

# Return the corresponding mean prediction accuracy compared to chance
# for classifying one-vs-all items.

classification_accuracy = np.mean(list(decoder.cv_scores_.values()))
chance_level = 1.0 / len(np.unique(conditions))
print(
    f"Classification accuracy: {classification_accuracy:.4f} / "
    f"Chance level: {chance_level}"
)
[Decoder.fit] Loading mask from
'/home/runner/nilearn_data/haxby2001/mask.nii.gz'
[Decoder.fit] Resamping mask
[Decoder.fit] Finished fit
[Decoder.fit] Loading data from <nibabel.nifti1.Nifti1Image object at
0x7f36eaf7de80>
[Decoder.fit] Extracting region signals
[Decoder.fit] Cleaning extracted signals
[Decoder.fit] Mask volume = 1.96442e+06mm^3 = 1964.42cm^3
[Decoder.fit] Standard brain volume = 1.88299e+06mm^3
[Decoder.fit] Original screening-percentile: 5
[Decoder.fit] Corrected screening-percentile: 4.79274
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.1s remaining:    0.0s
[Parallel(n_jobs=1)]: Done  96 out of  96 | elapsed:    7.4s finished
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
[Decoder.fit] Computing image from signals
Classification accuracy: 0.7589 / Chance level: 0.125

Total running time of the script: (2 minutes 23.772 seconds)

Estimated memory usage: 1013 MB

Gallery generated by Sphinx-Gallery