.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/04_glm_first_level/plot_spm_multimodal_faces.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_04_glm_first_level_plot_spm_multimodal_faces.py: Single-subject data (two runs) in native space ============================================== The example shows the analysis of an :term:`SPM` dataset, with two conditions: viewing a face image or a scrambled face image. This example takes a lot of time because the input are lists of 3D images sampled in different positions (encoded by different affine functions). .. seealso:: For more information see the :ref:`dataset description `. .. GENERATED FROM PYTHON SOURCE LINES 18-21 Fetch and inspect the data -------------------------- Fetch the :term:`SPM` multimodal_faces data. .. GENERATED FROM PYTHON SOURCE LINES 21-25 .. code-block:: Python from nilearn.datasets import fetch_spm_multimodal_fmri subject_data = fetch_spm_multimodal_fmri() .. rst-class:: sphx-glr-script-out .. code-block:: none [wrapper] Dataset created in /home/runner/nilearn_data/spm_multimodal_fmri [wrapper] Missing 390 functional scans for session 1. [wrapper] Data absent, downloading... [wrapper] Downloading data from https://www.fil.ion.ucl.ac.uk/spm/download/data/mmfaces/multimodal_fmri.zip ... [wrapper] Downloaded 3842048 of 134263085 bytes (2.9%%, 35.4s remaining) [wrapper] Downloaded 8486912 of 134263085 bytes (6.3%%, 30.5s remaining) [wrapper] Downloaded 13287424 of 134263085 bytes (9.9%%, 28.2s remaining) [wrapper] Downloaded 18300928 of 134263085 bytes (13.6%%, 26.2s remaining) [wrapper] Downloaded 23429120 of 134263085 bytes (17.5%%, 24.4s remaining) [wrapper] Downloaded 28598272 of 134263085 bytes (21.3%%, 22.9s remaining) [wrapper] Downloaded 33767424 of 134263085 bytes (25.2%%, 21.6s remaining) [wrapper] Downloaded 38936576 of 134263085 bytes (29.0%%, 20.3s remaining) [wrapper] Downloaded 44154880 of 134263085 bytes (32.9%%, 19.0s remaining) [wrapper] Downloaded 49487872 of 134263085 bytes (36.9%%, 17.7s remaining) [wrapper] Downloaded 55017472 of 134263085 bytes (41.0%%, 16.4s remaining) [wrapper] Downloaded 60907520 of 134263085 bytes (45.4%%, 14.9s remaining) [wrapper] Downloaded 67321856 of 134263085 bytes (50.1%%, 13.4s remaining) [wrapper] Downloaded 74489856 of 134263085 bytes (55.5%%, 11.6s remaining) [wrapper] Downloaded 82616320 of 134263085 bytes (61.5%%, 9.7s remaining) [wrapper] Downloaded 91996160 of 134263085 bytes (68.5%%, 7.6s remaining) [wrapper] Downloaded 100319232 of 134263085 bytes (74.7%%, 6.0s remaining) [wrapper] Downloaded 108503040 of 134263085 bytes (80.8%%, 4.4s remaining) [wrapper] Downloaded 113778688 of 134263085 bytes (84.7%%, 3.5s remaining) [wrapper] Downloaded 118603776 of 134263085 bytes (88.3%%, 2.7s remaining) [wrapper] Downloaded 123707392 of 134263085 bytes (92.1%%, 1.9s remaining) [wrapper] Downloaded 128966656 of 134263085 bytes (96.1%%, 0.9s remaining) [wrapper] ...done. (25 seconds, 0 min) [wrapper] Extracting data from /home/runner/nilearn_data/spm_multimodal_fmri/sub001/multimodal_fmri.zip... [wrapper] .. done. [wrapper] Downloading data from https://www.fil.ion.ucl.ac.uk/spm/download/data/mmfaces/multimodal_smri.zip ... [wrapper] Downloaded 3325952 of 6852766 bytes (48.5%%, 1.1s remaining) [wrapper] ...done. (3 seconds, 0 min) [wrapper] Extracting data from /home/runner/nilearn_data/spm_multimodal_fmri/sub001/multimodal_smri.zip... [wrapper] .. done. .. GENERATED FROM PYTHON SOURCE LINES 26-27 Let's inspect one of the event files before using them. .. GENERATED FROM PYTHON SOURCE LINES 27-34 .. code-block:: Python import pandas as pd events = [subject_data.events1, subject_data.events2] events_dataframe = pd.read_csv(events[0], sep="\t") events_dataframe["trial_type"].value_counts() .. rst-class:: sphx-glr-script-out .. code-block:: none trial_type scrambled 86 faces 64 Name: count, dtype: int64 .. GENERATED FROM PYTHON SOURCE LINES 35-37 We can confirm there are only 2 conditions in the dataset. .. GENERATED FROM PYTHON SOURCE LINES 37-43 .. code-block:: Python from nilearn.plotting import plot_event, show plot_event(events) show() .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_spm_multimodal_faces_001.png :alt: plot spm multimodal faces :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_spm_multimodal_faces_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 44-46 Resample the images: this is achieved by the ``concat_imgs`` function of Nilearn. .. GENERATED FROM PYTHON SOURCE LINES 46-63 .. code-block:: Python import warnings from nilearn.image import concat_imgs, mean_img, resample_img # Avoid getting too many warnings due to resampling with warnings.catch_warnings(): warnings.simplefilter("ignore") fmri_img = [ concat_imgs(subject_data.func1, auto_resample=True), concat_imgs(subject_data.func2, auto_resample=True), ] affine, shape = fmri_img[0].affine, fmri_img[0].shape print("Resampling the second image (this takes time)...") fmri_img[1] = resample_img( fmri_img[1], affine, shape[:3], copy_header=True, force_resample=True ) .. rst-class:: sphx-glr-script-out .. code-block:: none Resampling the second image (this takes time)... .. GENERATED FROM PYTHON SOURCE LINES 64-65 Let's create mean image for display purposes. .. GENERATED FROM PYTHON SOURCE LINES 65-67 .. code-block:: Python mean_image = mean_img(fmri_img, copy_header=True) .. GENERATED FROM PYTHON SOURCE LINES 68-72 Fit the model ------------- Fit the :term:`GLM` for the 2 runs by specifying a FirstLevelModel and then fitting it. .. GENERATED FROM PYTHON SOURCE LINES 72-96 .. code-block:: Python # Sample at the beginning of each acquisition. slice_time_ref = 0.0 # We use a discrete cosine transform to model signal drifts. drift_model = "cosine" # The cutoff for the drift model is 0.01 Hz. high_pass = 0.01 # The hemodynamic response function hrf_model = "spm + derivative" from nilearn.glm.first_level import FirstLevelModel print("Fitting a GLM") fmri_glm = FirstLevelModel( smoothing_fwhm=None, t_r=subject_data.t_r, hrf_model=hrf_model, drift_model=drift_model, high_pass=high_pass, ) fmri_glm = fmri_glm.fit(fmri_img, events=events) .. rst-class:: sphx-glr-script-out .. code-block:: none Fitting a GLM .. GENERATED FROM PYTHON SOURCE LINES 97-101 View the results ---------------- Now we can compute contrast-related statistical maps (in z-scale), and plot them. .. GENERATED FROM PYTHON SOURCE LINES 101-105 .. code-block:: Python from nilearn.plotting import plot_stat_map print("Computing contrasts") .. rst-class:: sphx-glr-script-out .. code-block:: none Computing contrasts .. GENERATED FROM PYTHON SOURCE LINES 106-111 We actually want more interesting contrasts. The simplest contrast just makes the difference between the two main conditions. We define the two opposite versions to run one-tailed t-tests. .. GENERATED FROM PYTHON SOURCE LINES 111-114 .. code-block:: Python contrasts = ["faces - scrambled", "scrambled - faces"] .. GENERATED FROM PYTHON SOURCE LINES 115-121 Let's store common parameters for all plots. We plot the contrasts values overlaid on the mean fMRI image and we will use the z-score values as transparency, with any voxel with | Z-score | > 3 being fully opaque and any voxel with 0 < | Z-score | < 1.96 being partly transparent. .. GENERATED FROM PYTHON SOURCE LINES 121-144 .. code-block:: Python plot_param = { "vmin": 0, "display_mode": "z", "cut_coords": 3, "black_bg": True, "bg_img": mean_image, "cmap": "inferno", "transparency_range": [0, 3], } # Iterate on contrasts to compute and plot them. for contrast_id in contrasts: print(f"\tcontrast id: {contrast_id}") results = fmri_glm.compute_contrast(contrast_id, output_type="all") plot_stat_map( results["stat"], title=contrast_id, transparency=results["z_score"], **plot_param, ) .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_spm_multimodal_faces_002.png :alt: plot spm multimodal faces :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_spm_multimodal_faces_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_spm_multimodal_faces_003.png :alt: plot spm multimodal faces :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_spm_multimodal_faces_003.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none contrast id: faces - scrambled /home/runner/work/nilearn/nilearn/examples/04_glm_first_level/plot_spm_multimodal_faces.py:135: UserWarning: One contrast given, assuming it for all 2 runs results = fmri_glm.compute_contrast(contrast_id, output_type="all") contrast id: scrambled - faces /home/runner/work/nilearn/nilearn/examples/04_glm_first_level/plot_spm_multimodal_faces.py:135: UserWarning: One contrast given, assuming it for all 2 runs results = fmri_glm.compute_contrast(contrast_id, output_type="all") .. GENERATED FROM PYTHON SOURCE LINES 145-148 We also define the effects of interest contrast, a 2-dimensional contrasts spanning the two conditions. .. GENERATED FROM PYTHON SOURCE LINES 148-163 .. code-block:: Python import numpy as np contrasts = np.eye(2) results = fmri_glm.compute_contrast(contrasts, output_type="all") plot_stat_map( results["stat"], title="effects of interest", transparency=results["z_score"], **plot_param, ) show() .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_spm_multimodal_faces_004.png :alt: plot spm multimodal faces :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_spm_multimodal_faces_004.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none /home/runner/work/nilearn/nilearn/examples/04_glm_first_level/plot_spm_multimodal_faces.py:152: UserWarning: One contrast given, assuming it for all 2 runs results = fmri_glm.compute_contrast(contrasts, output_type="all") /home/runner/work/nilearn/nilearn/examples/04_glm_first_level/plot_spm_multimodal_faces.py:152: UserWarning: F contrasts should have 20 columns, but it has only 2. The rest of the contrast was padded with zeros. results = fmri_glm.compute_contrast(contrasts, output_type="all") /home/runner/work/nilearn/nilearn/examples/04_glm_first_level/plot_spm_multimodal_faces.py:152: UserWarning: Running approximate fixed effects on F statistics. results = fmri_glm.compute_contrast(contrasts, output_type="all") .. GENERATED FROM PYTHON SOURCE LINES 164-173 Based on the resulting maps we observe that the analysis results in wide activity for the 'effects of interest' contrast, showing the implications of large portions of the visual cortex in the conditions. By contrast, the differential effect between "faces" and "scrambled" involves sparser, more anterior and lateral regions. It also displays some responses in the frontal lobe. .. rst-class:: sphx-glr-timing **Total running time of the script:** (2 minutes 13.149 seconds) **Estimated memory usage:** 976 MB .. _sphx_glr_download_auto_examples_04_glm_first_level_plot_spm_multimodal_faces.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn/0.12.0?urlpath=lab/tree/notebooks/auto_examples/04_glm_first_level/plot_spm_multimodal_faces.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_spm_multimodal_faces.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_spm_multimodal_faces.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_spm_multimodal_faces.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_