This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.

7.2.29. nilearn.datasets.fetch_atlas_schaefer_2018

nilearn.datasets.fetch_atlas_schaefer_2018(n_rois=400, yeo_networks=7, resolution_mm=1, data_dir=None, base_url=None, resume=True, verbose=1)

Download and return file names for the Schaefer 2018 parcellation

New in version 0.5.1.

The provided images are in MNI152 space.

n_rois: int

number of regions of interest {100, 200, 300, 400 (default), 500, 600, 700, 800, 900, 1000}

yeo_networks: int

ROI annotation according to yeo networks {7 (default), 17}

resolution_mm: int

Spatial resolution of atlas image in mm {1 (default), 2}

data_dir: string

directory where data should be downloaded and unpacked.

base_url: string

base_url of files to download (None results in default base_url).

resume: bool

whether to resumed download of a partly-downloaded file.

verbose: int

verbosity level (0 means no message).

data: sklearn.datasets.base.Bunch

Dictionary-like object, contains:

  • maps: 3D Nifti image, values are indices in the list of labels.

  • labels: ROI labels including Yeo-network annotation,list of strings.

  • description: A short description of the atlas and some references.


Release v0.14.3 of the Schaefer 2018 parcellation is used by default. Versions prior to v0.14.3 are known to contain erroneous region label names. For more details, see


For more information on this dataset, see

Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes AJ, Eickhoff SB, Yeo BTT. Local-Global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI, Cerebral Cortex, 29:3095-3114, 2018.

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zollei L., Polimeni JR, Fischl B, Liu H, Buckner RL. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125-65, 2011.

Licence: MIT.