8.2.11. Visualizing 4D probabilistic atlas maps

This example shows how to visualize probabilistic atlases made of 4D images. There are 3 different display types:

  1. “contours”, which means maps or ROIs are shown as contours delineated by colored lines.
  2. “filled_contours”, maps are shown as contours same as above but with fillings inside the contours.
  3. “continuous”, maps are shown as just color overlays.

A colorbar can optionally be added.

The nilearn.plotting.plot_prob_atlas function displays each map with each different color which are picked randomly from the colormap which is already defined.

See Plotting brain images for more information to know how to tune the parameters.

  • ../../_images/sphx_glr_plot_prob_atlas_001.png
  • ../../_images/sphx_glr_plot_prob_atlas_002.png
  • ../../_images/sphx_glr_plot_prob_atlas_003.png
  • ../../_images/sphx_glr_plot_prob_atlas_004.png
  • ../../_images/sphx_glr_plot_prob_atlas_005.png
  • ../../_images/sphx_glr_plot_prob_atlas_006.png
  • ../../_images/sphx_glr_plot_prob_atlas_007.png
  • ../../_images/sphx_glr_plot_prob_atlas_008.png
  • ../../_images/sphx_glr_plot_prob_atlas_009.png
  • ../../_images/sphx_glr_plot_prob_atlas_010.png
  • ../../_images/sphx_glr_plot_prob_atlas_011.png


Dataset created in /home/kamalakar/nilearn_data/icbm152_2009

Downloading data from http://www.bic.mni.mcgill.ca/~vfonov/icbm/2009/mni_icbm152_nlin_sym_09a_nifti.zip ...

Dataset created in /home/kamalakar/nilearn_data/allen_rsn_2011

Downloading data from http://mialab.mrn.org/data/hcp/ALL_HC_unthresholded_tmaps.nii ...
Downloading data from http://mialab.mrn.org/data/hcp/RSN_HC_unthresholded_tmaps.nii ...
Downloading data from http://mialab.mrn.org/data/hcp/rest_hcp_agg__component_ica_.nii ...

# Load 4D probabilistic atlases
from nilearn import datasets

# Harvard Oxford Atlasf
harvard_oxford = datasets.fetch_atlas_harvard_oxford('cort-prob-2mm')
harvard_oxford_sub = datasets.fetch_atlas_harvard_oxford('sub-prob-2mm')

# Multi Subject Dictionary Learning Atlas
msdl = datasets.fetch_atlas_msdl()

# Smith ICA Atlas and Brain Maps 2009
smith = datasets.fetch_atlas_smith_2009()

# ICBM tissue probability
icbm = datasets.fetch_icbm152_2009()

# Allen RSN networks
allen = datasets.fetch_atlas_allen_2011()

# Visualization
from nilearn import plotting

atlas_types = {'Harvard_Oxford': harvard_oxford.maps,
               'Harvard_Oxford sub': harvard_oxford_sub.maps,
               'MSDL': msdl.maps, 'Smith 2009 10 RSNs': smith.rsn10,
               'Smith2009 20 RSNs': smith.rsn20,
               'Smith2009 70 RSNs': smith.rsn70,
               'Smith2009 20 Brainmap': smith.bm20,
               'Smith2009 70 Brainmap': smith.bm70,
               'ICBM tissues': (icbm['wm'], icbm['gm'], icbm['csf']),
               'Allen2011': allen.rsn28,

for name, atlas in sorted(atlas_types.items()):
    plotting.plot_prob_atlas(atlas, title=name)

# An optional colorbar can be set
plotting.plot_prob_atlas(smith.bm10, title='Smith2009 10 Brainmap (with'
                                           ' colorbar)',

Total running time of the script: ( 5 minutes 11.511 seconds)

Generated by Sphinx-Gallery