Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.glm.RegressionResults#
- class nilearn.glm.RegressionResults(theta, Y, model, whitened_Y, whitened_residuals, cov=None, dispersion=1.0, nuisance=None)[source]#
 This class summarizes the fit of a linear regression model.
It handles the output of contrasts, estimates of covariance, etc.
Notes
This class is experimental. It may change in any future release of Nilearn.
- __init__(theta, Y, model, whitened_Y, whitened_residuals, cov=None, dispersion=1.0, nuisance=None)[source]#
 See LikelihoodModelResults constructor.
The only difference is that the whitened Y and residual values are stored for a regression model.
- normalized_residuals()[source]#
 Residuals, normalized to have unit length.
Notes
Is this supposed to return “stanardized residuals,” residuals standardized to have mean zero and approximately unit variance?
d_i = e_i / sqrt(MS_E)
Where MS_E = SSE / (n - k)
References
- 1
 Douglas C. Montgomery, Elizabeth A. Peck, and Geoffrey G. Vining. Introduction to Linear Regression Analysis (4th ed.). Wiley & Sons, 2006. ISBN 0471754951.
- 2
 Russell Davidson and James G. MacKinnon. Econometric theory and methods. Oxford Univ. Press, New York, NY [u.a.], 2004. ISBN 978-0-19-512372-2. URL: http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+393847152&sourceid=fbw_bibsonomy.
- Fcontrast(matrix, dispersion=None, invcov=None)[source]#
 Compute an Fcontrast for a contrast matrix matrix.
Here, matrix M is assumed to be non-singular. More precisely
is assumed invertible. Here,
is the generalized inverse of the design matrix of the model. There can be problems in non-OLS models where the rank of the covariance of the noise is not full.See the contrast module to see how to specify contrasts. In particular, the matrices from these contrasts will always be non-singular in the sense above.
- Parameters
 - matrix1D array-like
 Contrast matrix.
- dispersionNone or float, optional
 If None, use
self.dispersion.- invcovNone or array, optional
 Known inverse of variance covariance matrix. If None, calculate this matrix.
- Returns
 - f_res
FContrastResultsinstance with attributes F, df_den, df_num
- f_res
 
Notes
For F contrasts, we now specify an effect and covariance.
- Tcontrast(matrix, store=('t', 'effect', 'sd'), dispersion=None)[source]#
 Compute a Tcontrast for a row vector matrix
To get the t-statistic for a single column, use the ‘t’ method.
- Parameters
 - matrix1D array-like
 Contrast matrix.
- storesequence, optional
 Components of t to store in results output object. Defaults to all components (‘t’, ‘effect’, ‘sd’).
- dispersionNone or float, optional
 
- Returns
 - res
TContrastResultsobject 
- res
 
- conf_int(alpha=0.05, cols=None, dispersion=None)[source]#
 The confidence interval of the specified theta estimates.
- Parameters
 - alphafloat, optional
 The alpha level for the confidence interval. ie., alpha = .05 returns a 95% confidence interval. Default=0.05.
- colstuple, optional
 cols specifies which confidence intervals to return.
- dispersionNone or scalar, optional
 Scale factor for the variance / covariance (see class docstring and
vcovmethod docstring).
- Returns
 - cisndarray
 cis is shape
(len(cols), 2)where each row contains [lower, upper] for the given entry in cols
Notes
Confidence intervals are two-tailed.
- tailsstring, optional
 Possible values: ‘two’ | ‘upper’ | ‘lower’
Examples
>>> from numpy.random import standard_normal as stan >>> from nilearn.glm import OLSModel >>> x = np.hstack((stan((30,1)),stan((30,1)),stan((30,1)))) >>> beta=np.array([3.25, 1.5, 7.0]) >>> y = np.dot(x,beta) + stan((30)) >>> model = OLSModel(x).fit(y) >>> confidence_intervals = model.conf_int(cols=(1,2))
- t(column=None)[source]#
 Return the (Wald) t-statistic for a given parameter estimate.
Use Tcontrast for more complicated (Wald) t-statistics.
- vcov(matrix=None, column=None, dispersion=None, other=None)[source]#
 Variance/covariance matrix of linear contrast
- Parameters
 - matrix(dim, self.theta.shape[0]) array, optional
 Numerical contrast specification, where
dimrefers to the ‘dimension’ of the contrast i.e. 1 for t contrasts, 1 or more for F contrasts.- columnint, optional
 Alternative way of specifying contrasts (column index).
- dispersionfloat or (n_voxels,) array, optional
 Value(s) for the dispersion parameters.
- other(dim, self.theta.shape[0]) array, optional
 Alternative contrast specification (?).
- Returns
 - cov(dim, dim) or (n_voxels, dim, dim) array
 The estimated covariance matrix/matrices.
- Returns the variance/covariance matrix of a linear contrast of the
 - estimates of theta, multiplied by dispersion which will often be an
 - estimate of dispersion, like, sigma^2.
 - The covariance of interest is either specified as a (set of) column(s)
 - or a matrix.