Note
Click here to download the full example code or to run this example in your browser via Binder
Visualizing multiscale functional brain parcellations#
This example shows how to download and fetch brain parcellations of multiple networks using nilearn.datasets.fetch_atlas_basc_multiscale_2015
and visualize them using plotting function nilearn.plotting.plot_roi
.
We show here only three different networks of ‘symmetric’ version. For more details about different versions and different networks, please refer to its documentation.
Retrieving multiscale group brain parcellations#
# import datasets module and use `fetch_atlas_basc_multiscale_2015` function
from nilearn import datasets
parcellations = datasets.fetch_atlas_basc_multiscale_2015(version='sym')
# We show here networks of 64, 197, 444
networks_64 = parcellations['scale064']
networks_197 = parcellations['scale197']
networks_444 = parcellations['scale444']
Visualizing brain parcellations#
# import plotting module and use `plot_roi` function, since the maps are in 3D
from nilearn import plotting
# The coordinates of all plots are selected automatically by itself
# We manually change the colormap of our choice
plotting.plot_roi(networks_64, cmap=plotting.cm.bwr,
title='64 regions of brain clusters')
plotting.plot_roi(networks_197, cmap=plotting.cm.bwr,
title='197 regions of brain clusters')
plotting.plot_roi(networks_444, cmap=plotting.cm.bwr_r,
title='444 regions of brain clusters')
plotting.show()
Total running time of the script: ( 0 minutes 4.055 seconds)
Estimated memory usage: 9 MB