Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
8.9.10. nilearn.regions.HierarchicalKMeans¶
- class nilearn.regions.HierarchicalKMeans(n_clusters, init='k-means++', batch_size=1000, n_init=10, max_no_improvement=10, verbose=0, random_state=0, scaling=False)[source]¶
- Hierarchical KMeans: First clusterize the samples into big clusters. Then clusterize the samples inside these big clusters into smaller ones. - Parameters
- n_clusters: int
- The number of clusters to find. 
- init{‘k-means++’, ‘random’ or an ndarray}
- Method for initialization, defaults to ‘k-means++’: - ‘k-means++’ : selects initial cluster centers for k-means clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 
- ‘random’: choose k observations (rows) at random from data for the initial centroids. 
- If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. 
 
- batch_sizeint, optional, default: 1000
- Size of the mini batches. (Kmeans performed through MiniBatchKMeans) 
- n_initint, default=10
- Number of random initializations that are tried. In contrast to KMeans, the algorithm is only run once, using the best of the - n_initinitializations as measured by inertia.
- max_no_improvementint, default: 10
- Control early stopping based on the consecutive number of mini batches that does not yield an improvement on the smoothed inertia. To disable convergence detection based on inertia, set max_no_improvement to None. 
- random_stateint, RandomState instance or None (default)
- Determines random number generation for centroid initialization and random reassignment. Use an int to make the randomness deterministic. 
- scaling: bool, optional (default False)
- If scaling is True, each cluster is scaled by the square root of its size during transform(), preserving the l2-norm of the image. inverse_transform() will apply inversed scaling to yield an image with same l2-norm as input. 
- verbose: int, optional (default 0)
- Verbosity level. 
 
- Attributes
- `labels_ `: ndarray, shape = [n_features]
- cluster labels for each feature. 
- `sizes_`: ndarray, shape = [n_features]
- It contains the size of each cluster. 
 
 - __init__(n_clusters, init='k-means++', batch_size=1000, n_init=10, max_no_improvement=10, verbose=0, random_state=0, scaling=False)[source]¶
- Initialize self. See help(type(self)) for accurate signature. 
 - fit(X, y=None)[source]¶
- Compute clustering of the data. - Parameters
- X: ndarray, shape = [n_features, n_samples]
- Training data. 
- y: Ignored
 
- Returns
- self
 
 
 - transform(X, y=None)[source]¶
- Apply clustering, reduce the dimensionality of the data. - Parameters
- X: ndarray, shape = [n_features, n_samples]
- Data to transform with the fitted clustering. 
 
- Returns
- X_red: ndarray, shape = [n_clusters, n_samples]
- Data reduced with agglomerated signal for each cluster 
 
 
 - inverse_transform(X_red)[source]¶
- Send the reduced 2D data matrix back to the original feature space (voxels). - Parameters
- X_red: ndarray , shape = [n_clusters, n_samples]
- Data reduced with agglomerated signal for each cluster 
 
- Returns
- X_inv: ndarray, shape = [n_features, n_samples]
- Data reduced expanded to the original feature space 
 
 
 - fit_predict(X, y=None)¶
- Perform clustering on X and returns cluster labels. - Parameters
- Xarray-like of shape (n_samples, n_features)
- Input data. 
- yIgnored
- Not used, present for API consistency by convention. 
 
- Returns
- labelsndarray of shape (n_samples,), dtype=np.int64
- Cluster labels. 
 
 
 - fit_transform(X, y=None, **fit_params)¶
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters
- Xarray-like of shape (n_samples, n_features)
- Input samples. 
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
- Target values (None for unsupervised transformations). 
- **fit_paramsdict
- Additional fit parameters. 
 
- Returns
- X_newndarray array of shape (n_samples, n_features_new)
- Transformed array. 
 
 
 - get_params(deep=True)¶
- Get parameters for this estimator. - Parameters
- deepbool, default=True
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- Returns
- paramsdict
- Parameter names mapped to their values. 
 
 
 - set_params(**params)¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as - Pipeline). The latter have parameters of the form- <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
- Estimator parameters. 
 
- Returns
- selfestimator instance
- Estimator instance. 
 
 
 
