Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
8.13.7. nilearn.glm.RegressionResults¶
- class nilearn.glm.RegressionResults(theta, Y, model, whitened_Y, whitened_residuals, cov=None, dispersion=1.0, nuisance=None)[source]¶
- This class summarizes the fit of a linear regression model. - It handles the output of contrasts, estimates of covariance, etc. - Notes - This class is experimental. It may change in any future release of Nilearn. - __init__(theta, Y, model, whitened_Y, whitened_residuals, cov=None, dispersion=1.0, nuisance=None)[source]¶
- See LikelihoodModelResults constructor. - The only difference is that the whitened Y and residual values are stored for a regression model. 
 - normalized_residuals()[source]¶
- Residuals, normalized to have unit length. - Notes - Is this supposed to return “stanardized residuals,” residuals standardized to have mean zero and approximately unit variance? - d_i = e_i / sqrt(MS_E) - Where MS_E = SSE / (n - k) - References 
 - Fcontrast(matrix, dispersion=None, invcov=None)[source]¶
- Compute an Fcontrast for a contrast matrix matrix. - Here, matrix M is assumed to be non-singular. More precisely  - is assumed invertible. Here,  is the generalized inverse of the design matrix of the model. There can be problems in non-OLS models where the rank of the covariance of the noise is not full. is the generalized inverse of the design matrix of the model. There can be problems in non-OLS models where the rank of the covariance of the noise is not full.- See the contrast module to see how to specify contrasts. In particular, the matrices from these contrasts will always be non-singular in the sense above. - Parameters
- matrix1D array-like
- Contrast matrix. 
- dispersionNone or float, optional
- If None, use - self.dispersion.
- invcovNone or array, optional
- Known inverse of variance covariance matrix. If None, calculate this matrix. 
 
- Returns
- f_resFContrastResultsinstance
- with attributes F, df_den, df_num 
 
- f_res
 - Notes - For F contrasts, we now specify an effect and covariance. 
 - Tcontrast(matrix, store=('t', 'effect', 'sd'), dispersion=None)[source]¶
- Compute a Tcontrast for a row vector matrix - To get the t-statistic for a single column, use the ‘t’ method. - Parameters
- matrix1D array-like
- Contrast matrix. 
- storesequence, optional
- Components of t to store in results output object. Defaults to all components (‘t’, ‘effect’, ‘sd’). 
- dispersionNone or float, optional
 
- Returns
- resTContrastResultsobject
 
- res
 
 - conf_int(alpha=0.05, cols=None, dispersion=None)[source]¶
- The confidence interval of the specified theta estimates. - Parameters
- alphafloat, optional
- The alpha level for the confidence interval. ie., alpha = .05 returns a 95% confidence interval. Default=0.05. 
- colstuple, optional
- cols specifies which confidence intervals to return. 
- dispersionNone or scalar, optional
- Scale factor for the variance / covariance (see class docstring and - vcovmethod docstring).
 
- Returns
- cisndarray
- cis is shape - (len(cols), 2)where each row contains [lower, upper] for the given entry in cols
 
 - Notes - Confidence intervals are two-tailed. - tailsstring, optional
- Possible values: ‘two’ | ‘upper’ | ‘lower’ 
 - Examples - >>> from numpy.random import standard_normal as stan >>> from nilearn.glm import OLSModel >>> x = np.hstack((stan((30,1)),stan((30,1)),stan((30,1)))) >>> beta=np.array([3.25, 1.5, 7.0]) >>> y = np.dot(x,beta) + stan((30)) >>> model = OLSModel(x).fit(y) >>> confidence_intervals = model.conf_int(cols=(1,2)) 
 - t(column=None)[source]¶
- Return the (Wald) t-statistic for a given parameter estimate. - Use Tcontrast for more complicated (Wald) t-statistics. 
 - vcov(matrix=None, column=None, dispersion=None, other=None)[source]¶
- Variance/covariance matrix of linear contrast - Parameters
- matrix(dim, self.theta.shape[0]) array, optional
- Numerical contrast specification, where - dimrefers to the ‘dimension’ of the contrast i.e. 1 for t contrasts, 1 or more for F contrasts.
- columnint, optional
- Alternative way of specifying contrasts (column index). 
- dispersionfloat or (n_voxels,) array, optional
- Value(s) for the dispersion parameters. 
- other(dim, self.theta.shape[0]) array, optional
- Alternative contrast specification (?). 
 
- Returns
- cov(dim, dim) or (n_voxels, dim, dim) array
- The estimated covariance matrix/matrices. 
- Returns the variance/covariance matrix of a linear contrast of the
- estimates of theta, multiplied by dispersion which will often be an
- estimate of dispersion, like, sigma^2.
- The covariance of interest is either specified as a (set of) column(s)
- or a matrix.
 
 
 
