:orphan: .. _sphx_glr_auto_examples: Nilearn usage examples ====================== .. warning:: If you want to run the examples, make sure you execute them in a directory where you have write permissions, or you copy the examples into such a directory. If you install nilearn manually, make sure you have followed :ref:`the instructions `. .. contents:: **Contents** :local: :depth: 1 .. _tutorial_examples: Tutorial examples ------------------ Introductory examples that teach how to use nilearn. .. raw:: html
.. only:: html .. figure:: /auto_examples/images/thumb/sphx_glr_plot_python_101_thumb.png :alt: Basic numerics and plotting with Python :ref:`sphx_glr_auto_examples_plot_python_101.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/plot_python_101 .. raw:: html
.. only:: html .. figure:: /auto_examples/images/thumb/sphx_glr_plot_nilearn_101_thumb.png :alt: Basic nilearn example: manipulating and looking at data :ref:`sphx_glr_auto_examples_plot_nilearn_101.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/plot_nilearn_101 .. raw:: html
.. only:: html .. figure:: /auto_examples/images/thumb/sphx_glr_plot_3d_and_4d_niimg_thumb.png :alt: 3D and 4D niimgs: handling and visualizing :ref:`sphx_glr_auto_examples_plot_3d_and_4d_niimg.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/plot_3d_and_4d_niimg .. raw:: html
.. only:: html .. figure:: /auto_examples/images/thumb/sphx_glr_plot_decoding_tutorial_thumb.png :alt: A introduction tutorial to fMRI decoding :ref:`sphx_glr_auto_examples_plot_decoding_tutorial.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/plot_decoding_tutorial .. raw:: html
.. only:: html .. figure:: /auto_examples/images/thumb/sphx_glr_plot_single_subject_single_run_thumb.png :alt: Intro to GLM Analysis: a single-session, single-subject fMRI dataset :ref:`sphx_glr_auto_examples_plot_single_subject_single_run.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/plot_single_subject_single_run .. raw:: html
.. _sphx_glr_auto_examples_01_plotting: Visualization of brain images ----------------------------- See :ref:`plotting` for more details. .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_demo_glass_brain_thumb.png :alt: Glass brain plotting in nilearn :ref:`sphx_glr_auto_examples_01_plotting_plot_demo_glass_brain.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_demo_glass_brain .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_visualize_megatrawls_netmats_thumb.png :alt: Visualizing Megatrawls Network Matrices from Human Connectome Project :ref:`sphx_glr_auto_examples_01_plotting_plot_visualize_megatrawls_netmats.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_visualize_megatrawls_netmats .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_atlas_thumb.png :alt: Basic Atlas plotting :ref:`sphx_glr_auto_examples_01_plotting_plot_atlas.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_atlas .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_multiscale_parcellations_thumb.png :alt: Visualizing multiscale functional brain parcellations :ref:`sphx_glr_auto_examples_01_plotting_plot_multiscale_parcellations.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_multiscale_parcellations .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_colormaps_thumb.png :alt: Matplotlib colormaps in Nilearn :ref:`sphx_glr_auto_examples_01_plotting_plot_colormaps.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_colormaps .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_overlay_thumb.png :alt: Visualizing a probabilistic atlas: the default mode in the MSDL atlas :ref:`sphx_glr_auto_examples_01_plotting_plot_overlay.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_overlay .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_dim_plotting_thumb.png :alt: Controlling the contrast of the background when plotting :ref:`sphx_glr_auto_examples_01_plotting_plot_dim_plotting.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_dim_plotting .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_visualization_thumb.png :alt: NeuroImaging volumes visualization :ref:`sphx_glr_auto_examples_01_plotting_plot_visualization.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_visualization .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_carpet_thumb.png :alt: Visualizing global patterns with a carpet plot :ref:`sphx_glr_auto_examples_01_plotting_plot_carpet.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_carpet .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_haxby_masks_thumb.png :alt: Plot Haxby masks :ref:`sphx_glr_auto_examples_01_plotting_plot_haxby_masks.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_haxby_masks .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_surface_projection_strategies_thumb.png :alt: Technical point: Illustration of the volume to surface sampling schemes :ref:`sphx_glr_auto_examples_01_plotting_plot_surface_projection_strategies.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_surface_projection_strategies .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_demo_plotting_thumb.png :alt: Plotting tools in nilearn :ref:`sphx_glr_auto_examples_01_plotting_plot_demo_plotting.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_demo_plotting .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_prob_atlas_thumb.png :alt: Visualizing 4D probabilistic atlas maps :ref:`sphx_glr_auto_examples_01_plotting_plot_prob_atlas.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_prob_atlas .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_surf_stat_map_thumb.png :alt: Seed-based connectivity on the surface :ref:`sphx_glr_auto_examples_01_plotting_plot_surf_stat_map.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_surf_stat_map .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_surf_atlas_thumb.png :alt: Loading and plotting of a cortical surface atlas :ref:`sphx_glr_auto_examples_01_plotting_plot_surf_atlas.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_surf_atlas .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_3d_map_to_surface_projection_thumb.png :alt: Making a surface plot of a 3D statistical map :ref:`sphx_glr_auto_examples_01_plotting_plot_3d_map_to_surface_projection.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_3d_map_to_surface_projection .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_demo_glass_brain_extensive_thumb.png :alt: Glass brain plotting in nilearn (all options) :ref:`sphx_glr_auto_examples_01_plotting_plot_demo_glass_brain_extensive.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_demo_glass_brain_extensive .. raw:: html
.. only:: html .. figure:: /auto_examples/01_plotting/images/thumb/sphx_glr_plot_demo_more_plotting_thumb.png :alt: More plotting tools from nilearn :ref:`sphx_glr_auto_examples_01_plotting_plot_demo_more_plotting.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/01_plotting/plot_demo_more_plotting .. raw:: html
.. _sphx_glr_auto_examples_02_decoding: Decoding and predicting from brain images ----------------------------------------- See :ref:`decoding` for more details. .. raw:: html
.. only:: html .. figure:: /auto_examples/02_decoding/images/thumb/sphx_glr_plot_haxby_stimuli_thumb.png :alt: Show stimuli of Haxby et al. dataset :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_stimuli.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/02_decoding/plot_haxby_stimuli .. raw:: html
.. only:: html .. figure:: /auto_examples/02_decoding/images/thumb/sphx_glr_plot_mixed_gambles_frem_thumb.png :alt: FREM on Jimura et al "mixed gambles" dataset. :ref:`sphx_glr_auto_examples_02_decoding_plot_mixed_gambles_frem.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/02_decoding/plot_mixed_gambles_frem .. raw:: html
.. only:: html .. figure:: /auto_examples/02_decoding/images/thumb/sphx_glr_plot_haxby_frem_thumb.png :alt: Decoding with FREM: face vs house object recognition :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_frem.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/02_decoding/plot_haxby_frem .. raw:: html
.. only:: html .. figure:: /auto_examples/02_decoding/images/thumb/sphx_glr_plot_oasis_vbm_space_net_thumb.png :alt: Voxel-Based Morphometry on Oasis dataset with Space-Net prior :ref:`sphx_glr_auto_examples_02_decoding_plot_oasis_vbm_space_net.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/02_decoding/plot_oasis_vbm_space_net .. raw:: html
.. only:: html .. figure:: /auto_examples/02_decoding/images/thumb/sphx_glr_plot_haxby_anova_svm_thumb.png :alt: Decoding with ANOVA + SVM: face vs house in the Haxby dataset :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_anova_svm.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/02_decoding/plot_haxby_anova_svm .. raw:: html
.. only:: html .. figure:: /auto_examples/02_decoding/images/thumb/sphx_glr_plot_haxby_searchlight_surface_thumb.png :alt: Cortical surface-based searchlight decoding :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_searchlight_surface.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/02_decoding/plot_haxby_searchlight_surface .. raw:: html
.. only:: html .. figure:: /auto_examples/02_decoding/images/thumb/sphx_glr_plot_haxby_multiclass_thumb.png :alt: The haxby dataset: different multi-class strategies :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_multiclass.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/02_decoding/plot_haxby_multiclass .. raw:: html
.. only:: html .. figure:: /auto_examples/02_decoding/images/thumb/sphx_glr_plot_haxby_searchlight_thumb.png :alt: Searchlight analysis of face vs house recognition :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_searchlight.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/02_decoding/plot_haxby_searchlight .. raw:: html
.. only:: html .. figure:: /auto_examples/02_decoding/images/thumb/sphx_glr_plot_haxby_glm_decoding_thumb.png :alt: Decoding of a dataset after GLM fit for signal extraction :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_glm_decoding.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/02_decoding/plot_haxby_glm_decoding .. raw:: html
.. only:: html .. figure:: /auto_examples/02_decoding/images/thumb/sphx_glr_plot_haxby_grid_search_thumb.png :alt: Setting a parameter by cross-validation :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_grid_search.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/02_decoding/plot_haxby_grid_search .. raw:: html
.. only:: html .. figure:: /auto_examples/02_decoding/images/thumb/sphx_glr_plot_haxby_full_analysis_thumb.png :alt: ROI-based decoding analysis in Haxby et al. dataset :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_full_analysis.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/02_decoding/plot_haxby_full_analysis .. raw:: html
.. only:: html .. figure:: /auto_examples/02_decoding/images/thumb/sphx_glr_plot_haxby_different_estimators_thumb.png :alt: Different classifiers in decoding the Haxby dataset :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_different_estimators.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/02_decoding/plot_haxby_different_estimators .. raw:: html
.. only:: html .. figure:: /auto_examples/02_decoding/images/thumb/sphx_glr_plot_oasis_vbm_thumb.png :alt: Voxel-Based Morphometry on Oasis dataset :ref:`sphx_glr_auto_examples_02_decoding_plot_oasis_vbm.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/02_decoding/plot_oasis_vbm .. raw:: html
.. only:: html .. figure:: /auto_examples/02_decoding/images/thumb/sphx_glr_plot_simulated_data_thumb.png :alt: Example of pattern recognition on simulated data :ref:`sphx_glr_auto_examples_02_decoding_plot_simulated_data.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/02_decoding/plot_simulated_data .. raw:: html
.. only:: html .. figure:: /auto_examples/02_decoding/images/thumb/sphx_glr_plot_miyawaki_encoding_thumb.png :alt: Encoding models for visual stimuli from Miyawaki et al. 2008 :ref:`sphx_glr_auto_examples_02_decoding_plot_miyawaki_encoding.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/02_decoding/plot_miyawaki_encoding .. raw:: html
.. only:: html .. figure:: /auto_examples/02_decoding/images/thumb/sphx_glr_plot_miyawaki_reconstruction_thumb.png :alt: Reconstruction of visual stimuli from Miyawaki et al. 2008 :ref:`sphx_glr_auto_examples_02_decoding_plot_miyawaki_reconstruction.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/02_decoding/plot_miyawaki_reconstruction .. raw:: html
.. _sphx_glr_auto_examples_03_connectivity: Functional connectivity ----------------------- See :ref:`parcellating_brain`, :ref:`extracting_rsn` or :ref:`functional_connectomes` for more details. .. raw:: html
.. only:: html .. figure:: /auto_examples/03_connectivity/images/thumb/sphx_glr_plot_probabilistic_atlas_extraction_thumb.png :alt: Extracting signals of a probabilistic atlas of functional regions :ref:`sphx_glr_auto_examples_03_connectivity_plot_probabilistic_atlas_extraction.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/03_connectivity/plot_probabilistic_atlas_extraction .. raw:: html
.. only:: html .. figure:: /auto_examples/03_connectivity/images/thumb/sphx_glr_plot_inverse_covariance_connectome_thumb.png :alt: Computing a connectome with sparse inverse covariance :ref:`sphx_glr_auto_examples_03_connectivity_plot_inverse_covariance_connectome.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/03_connectivity/plot_inverse_covariance_connectome .. raw:: html
.. only:: html .. figure:: /auto_examples/03_connectivity/images/thumb/sphx_glr_plot_simulated_connectome_thumb.png :alt: Connectivity structure estimation on simulated data :ref:`sphx_glr_auto_examples_03_connectivity_plot_simulated_connectome.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/03_connectivity/plot_simulated_connectome .. raw:: html
.. only:: html .. figure:: /auto_examples/03_connectivity/images/thumb/sphx_glr_plot_compare_decomposition_thumb.png :alt: Deriving spatial maps from group fMRI data using ICA and Dictionary Learning :ref:`sphx_glr_auto_examples_03_connectivity_plot_compare_decomposition.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/03_connectivity/plot_compare_decomposition .. raw:: html
.. only:: html .. figure:: /auto_examples/03_connectivity/images/thumb/sphx_glr_plot_seed_to_voxel_correlation_thumb.png :alt: Producing single subject maps of seed-to-voxel correlation :ref:`sphx_glr_auto_examples_03_connectivity_plot_seed_to_voxel_correlation.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/03_connectivity/plot_seed_to_voxel_correlation .. raw:: html
.. only:: html .. figure:: /auto_examples/03_connectivity/images/thumb/sphx_glr_plot_multi_subject_connectome_thumb.png :alt: Group Sparse inverse covariance for multi-subject connectome :ref:`sphx_glr_auto_examples_03_connectivity_plot_multi_subject_connectome.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/03_connectivity/plot_multi_subject_connectome .. raw:: html
.. only:: html .. figure:: /auto_examples/03_connectivity/images/thumb/sphx_glr_plot_extract_regions_dictlearning_maps_thumb.png :alt: Regions extraction using :term:`Dictionary learning` and functional connectomes :ref:`sphx_glr_auto_examples_03_connectivity_plot_extract_regions_dictlearning_maps.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/03_connectivity/plot_extract_regions_dictlearning_maps .. raw:: html
.. only:: html .. figure:: /auto_examples/03_connectivity/images/thumb/sphx_glr_plot_atlas_comparison_thumb.png :alt: Comparing connectomes on different reference atlases :ref:`sphx_glr_auto_examples_03_connectivity_plot_atlas_comparison.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/03_connectivity/plot_atlas_comparison .. raw:: html
.. only:: html .. figure:: /auto_examples/03_connectivity/images/thumb/sphx_glr_plot_group_level_connectivity_thumb.png :alt: Classification of age groups using functional connectivity :ref:`sphx_glr_auto_examples_03_connectivity_plot_group_level_connectivity.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/03_connectivity/plot_group_level_connectivity .. raw:: html
.. only:: html .. figure:: /auto_examples/03_connectivity/images/thumb/sphx_glr_plot_signal_extraction_thumb.png :alt: Extracting signals from a brain parcellation :ref:`sphx_glr_auto_examples_03_connectivity_plot_signal_extraction.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/03_connectivity/plot_signal_extraction .. raw:: html
.. only:: html .. figure:: /auto_examples/03_connectivity/images/thumb/sphx_glr_plot_sphere_based_connectome_thumb.png :alt: Extract signals on spheres and plot a connectome :ref:`sphx_glr_auto_examples_03_connectivity_plot_sphere_based_connectome.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/03_connectivity/plot_sphere_based_connectome .. raw:: html
.. only:: html .. figure:: /auto_examples/03_connectivity/images/thumb/sphx_glr_plot_data_driven_parcellations_thumb.png :alt: Clustering methods to learn a brain parcellation from fMRI :ref:`sphx_glr_auto_examples_03_connectivity_plot_data_driven_parcellations.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/03_connectivity/plot_data_driven_parcellations .. raw:: html
.. _sphx_glr_auto_examples_04_glm_first_level: GLM: First level analysis examples ----------------------------------- These are examples focused on showcasing first level models functionality and single subject analysis. See :ref:`glm` for more details. .. raw:: html
.. only:: html .. figure:: /auto_examples/04_glm_first_level/images/thumb/sphx_glr_plot_write_events_file_thumb.png :alt: Generate an events.tsv file for the NeuroSpin localizer task :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_write_events_file.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/04_glm_first_level/plot_write_events_file .. raw:: html
.. only:: html .. figure:: /auto_examples/04_glm_first_level/images/thumb/sphx_glr_plot_fixed_effects_thumb.png :alt: Example of explicit fixed effects fMRI model fitting :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_fixed_effects.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/04_glm_first_level/plot_fixed_effects .. raw:: html
.. only:: html .. figure:: /auto_examples/04_glm_first_level/images/thumb/sphx_glr_plot_adhd_dmn_thumb.png :alt: Default Mode Network extraction of AHDH dataset :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_adhd_dmn.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/04_glm_first_level/plot_adhd_dmn .. raw:: html
.. only:: html .. figure:: /auto_examples/04_glm_first_level/images/thumb/sphx_glr_plot_design_matrix_thumb.png :alt: Examples of design matrices :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_design_matrix.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/04_glm_first_level/plot_design_matrix .. raw:: html
.. only:: html .. figure:: /auto_examples/04_glm_first_level/images/thumb/sphx_glr_plot_fir_model_thumb.png :alt: Analysis of an fMRI dataset with a Finite Impule Response (FIR) model :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_fir_model.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/04_glm_first_level/plot_fir_model .. raw:: html
.. only:: html .. figure:: /auto_examples/04_glm_first_level/images/thumb/sphx_glr_plot_spm_multimodal_faces_thumb.png :alt: Single-subject data (two sessions) in native space :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_spm_multimodal_faces.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/04_glm_first_level/plot_spm_multimodal_faces .. raw:: html
.. only:: html .. figure:: /auto_examples/04_glm_first_level/images/thumb/sphx_glr_plot_hrf_thumb.png :alt: Example of MRI response functions :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_hrf.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/04_glm_first_level/plot_hrf .. raw:: html
.. only:: html .. figure:: /auto_examples/04_glm_first_level/images/thumb/sphx_glr_plot_fiac_analysis_thumb.png :alt: Simple example of two-session fMRI model fitting :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_fiac_analysis.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/04_glm_first_level/plot_fiac_analysis .. raw:: html
.. only:: html .. figure:: /auto_examples/04_glm_first_level/images/thumb/sphx_glr_plot_bids_features_thumb.png :alt: First level analysis of a complete BIDS dataset from openneuro :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_bids_features.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/04_glm_first_level/plot_bids_features .. raw:: html
.. only:: html .. figure:: /auto_examples/04_glm_first_level/images/thumb/sphx_glr_plot_predictions_residuals_thumb.png :alt: Predicted time series and residuals :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_predictions_residuals.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/04_glm_first_level/plot_predictions_residuals .. raw:: html
.. only:: html .. figure:: /auto_examples/04_glm_first_level/images/thumb/sphx_glr_plot_localizer_surface_analysis_thumb.png :alt: Example of surface-based first-level analysis :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_localizer_surface_analysis.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/04_glm_first_level/plot_localizer_surface_analysis .. raw:: html
.. only:: html .. figure:: /auto_examples/04_glm_first_level/images/thumb/sphx_glr_plot_first_level_details_thumb.png :alt: Understanding parameters of the first-level model :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_first_level_details.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/04_glm_first_level/plot_first_level_details .. raw:: html
.. _sphx_glr_auto_examples_05_glm_second_level: GLM : Second level analysis examples ------------------------------------- These are examples focused on showcasing second level models functionality and group level analysis. See :ref:`glm` for more details. .. raw:: html
.. only:: html .. figure:: /auto_examples/05_glm_second_level/images/thumb/sphx_glr_plot_second_level_design_matrix_thumb.png :alt: Example of second level design matrix :ref:`sphx_glr_auto_examples_05_glm_second_level_plot_second_level_design_matrix.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/05_glm_second_level/plot_second_level_design_matrix .. raw:: html
.. only:: html .. figure:: /auto_examples/05_glm_second_level/images/thumb/sphx_glr_plot_proportion_activated_voxels_thumb.png :alt: Second-level fMRI model: true positive proportion in clusters :ref:`sphx_glr_auto_examples_05_glm_second_level_plot_proportion_activated_voxels.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/05_glm_second_level/plot_proportion_activated_voxels .. raw:: html
.. only:: html .. figure:: /auto_examples/05_glm_second_level/images/thumb/sphx_glr_plot_thresholding_thumb.png :alt: Statistical testing of a second-level analysis :ref:`sphx_glr_auto_examples_05_glm_second_level_plot_thresholding.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/05_glm_second_level/plot_thresholding .. raw:: html
.. only:: html .. figure:: /auto_examples/05_glm_second_level/images/thumb/sphx_glr_plot_oasis_thumb.png :alt: Voxel-Based Morphometry on Oasis dataset :ref:`sphx_glr_auto_examples_05_glm_second_level_plot_oasis.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/05_glm_second_level/plot_oasis .. raw:: html
.. only:: html .. figure:: /auto_examples/05_glm_second_level/images/thumb/sphx_glr_plot_second_level_two_sample_test_thumb.png :alt: Second-level fMRI model: two-sample test, unpaired and paired :ref:`sphx_glr_auto_examples_05_glm_second_level_plot_second_level_two_sample_test.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/05_glm_second_level/plot_second_level_two_sample_test .. raw:: html
.. only:: html .. figure:: /auto_examples/05_glm_second_level/images/thumb/sphx_glr_plot_second_level_one_sample_test_thumb.png :alt: Second-level fMRI model: one sample test :ref:`sphx_glr_auto_examples_05_glm_second_level_plot_second_level_one_sample_test.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/05_glm_second_level/plot_second_level_one_sample_test .. raw:: html
.. only:: html .. figure:: /auto_examples/05_glm_second_level/images/thumb/sphx_glr_plot_second_level_association_test_thumb.png :alt: Example of generic design in second-level models :ref:`sphx_glr_auto_examples_05_glm_second_level_plot_second_level_association_test.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/05_glm_second_level/plot_second_level_association_test .. raw:: html
.. _sphx_glr_auto_examples_06_manipulating_images: Manipulating brain image volumes -------------------------------- See :ref:`data_manipulation` for more details. .. raw:: html
.. only:: html .. figure:: /auto_examples/06_manipulating_images/images/thumb/sphx_glr_plot_negate_image_thumb.png :alt: Negating an image with math_img :ref:`sphx_glr_auto_examples_06_manipulating_images_plot_negate_image.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/06_manipulating_images/plot_negate_image .. raw:: html
.. only:: html .. figure:: /auto_examples/06_manipulating_images/images/thumb/sphx_glr_plot_compare_mean_image_thumb.png :alt: Comparing the means of 2 images :ref:`sphx_glr_auto_examples_06_manipulating_images_plot_compare_mean_image.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/06_manipulating_images/plot_compare_mean_image .. raw:: html
.. only:: html .. figure:: /auto_examples/06_manipulating_images/images/thumb/sphx_glr_plot_smooth_mean_image_thumb.png :alt: Smoothing an image :ref:`sphx_glr_auto_examples_06_manipulating_images_plot_smooth_mean_image.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/06_manipulating_images/plot_smooth_mean_image .. raw:: html
.. only:: html .. figure:: /auto_examples/06_manipulating_images/images/thumb/sphx_glr_plot_extract_rois_smith_atlas_thumb.png :alt: Regions Extraction of Default Mode Networks using Smith Atlas :ref:`sphx_glr_auto_examples_06_manipulating_images_plot_extract_rois_smith_atlas.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/06_manipulating_images/plot_extract_rois_smith_atlas .. raw:: html
.. only:: html .. figure:: /auto_examples/06_manipulating_images/images/thumb/sphx_glr_plot_extract_regions_labels_image_thumb.png :alt: Breaking an atlas of labels in separated regions :ref:`sphx_glr_auto_examples_06_manipulating_images_plot_extract_regions_labels_image.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/06_manipulating_images/plot_extract_regions_labels_image .. raw:: html
.. only:: html .. figure:: /auto_examples/06_manipulating_images/images/thumb/sphx_glr_plot_resample_to_template_thumb.png :alt: Resample an image to a template :ref:`sphx_glr_auto_examples_06_manipulating_images_plot_resample_to_template.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/06_manipulating_images/plot_resample_to_template .. raw:: html
.. only:: html .. figure:: /auto_examples/06_manipulating_images/images/thumb/sphx_glr_plot_nifti_simple_thumb.png :alt: Simple example of NiftiMasker use :ref:`sphx_glr_auto_examples_06_manipulating_images_plot_nifti_simple.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/06_manipulating_images/plot_nifti_simple .. raw:: html
.. only:: html .. figure:: /auto_examples/06_manipulating_images/images/thumb/sphx_glr_plot_nifti_labels_simple_thumb.png :alt: Extracting signals from brain regions using the NiftiLabelsMasker :ref:`sphx_glr_auto_examples_06_manipulating_images_plot_nifti_labels_simple.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/06_manipulating_images/plot_nifti_labels_simple .. raw:: html
.. only:: html .. figure:: /auto_examples/06_manipulating_images/images/thumb/sphx_glr_plot_extract_rois_statistical_maps_thumb.png :alt: Region Extraction using a t-statistical map (3D) :ref:`sphx_glr_auto_examples_06_manipulating_images_plot_extract_rois_statistical_maps.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/06_manipulating_images/plot_extract_rois_statistical_maps .. raw:: html
.. only:: html .. figure:: /auto_examples/06_manipulating_images/images/thumb/sphx_glr_plot_mask_computation_thumb.png :alt: Understanding NiftiMasker and mask computation :ref:`sphx_glr_auto_examples_06_manipulating_images_plot_mask_computation.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/06_manipulating_images/plot_mask_computation .. raw:: html
.. only:: html .. figure:: /auto_examples/06_manipulating_images/images/thumb/sphx_glr_plot_affine_transformation_thumb.png :alt: Visualization of affine resamplings :ref:`sphx_glr_auto_examples_06_manipulating_images_plot_affine_transformation.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/06_manipulating_images/plot_affine_transformation .. raw:: html
.. only:: html .. figure:: /auto_examples/06_manipulating_images/images/thumb/sphx_glr_plot_roi_extraction_thumb.png :alt: Computing a Region of Interest (ROI) mask manually :ref:`sphx_glr_auto_examples_06_manipulating_images_plot_roi_extraction.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/06_manipulating_images/plot_roi_extraction .. raw:: html
.. _sphx_glr_auto_examples_07_advanced: Advanced statistical analysis of brain images --------------------------------------------- .. raw:: html
.. only:: html .. figure:: /auto_examples/07_advanced/images/thumb/sphx_glr_plot_ica_resting_state_thumb.png :alt: Multivariate decompositions: Independent component analysis of fMRI :ref:`sphx_glr_auto_examples_07_advanced_plot_ica_resting_state.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/07_advanced/plot_ica_resting_state .. raw:: html
.. only:: html .. figure:: /auto_examples/07_advanced/images/thumb/sphx_glr_plot_localizer_simple_analysis_thumb.png :alt: Massively univariate analysis of a calculation task from the Localizer dataset :ref:`sphx_glr_auto_examples_07_advanced_plot_localizer_simple_analysis.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/07_advanced/plot_localizer_simple_analysis .. raw:: html
.. only:: html .. figure:: /auto_examples/07_advanced/images/thumb/sphx_glr_plot_bids_analysis_thumb.png :alt: BIDS dataset first and second level analysis :ref:`sphx_glr_auto_examples_07_advanced_plot_bids_analysis.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/07_advanced/plot_bids_analysis .. raw:: html
.. only:: html .. figure:: /auto_examples/07_advanced/images/thumb/sphx_glr_plot_age_group_prediction_cross_val_thumb.png :alt: Functional connectivity predicts age group :ref:`sphx_glr_auto_examples_07_advanced_plot_age_group_prediction_cross_val.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/07_advanced/plot_age_group_prediction_cross_val .. raw:: html
.. only:: html .. figure:: /auto_examples/07_advanced/images/thumb/sphx_glr_plot_neurovault_meta_analysis_thumb.png :alt: NeuroVault meta-analysis of stop-go paradigm studies. :ref:`sphx_glr_auto_examples_07_advanced_plot_neurovault_meta_analysis.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/07_advanced/plot_neurovault_meta_analysis .. raw:: html
.. only:: html .. figure:: /auto_examples/07_advanced/images/thumb/sphx_glr_plot_surface_bids_analysis_thumb.png :alt: Surface-based dataset first and second level analysis of a dataset :ref:`sphx_glr_auto_examples_07_advanced_plot_surface_bids_analysis.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/07_advanced/plot_surface_bids_analysis .. raw:: html
.. only:: html .. figure:: /auto_examples/07_advanced/images/thumb/sphx_glr_plot_localizer_mass_univariate_methods_thumb.png :alt: Massively univariate analysis of a motor task from the Localizer dataset :ref:`sphx_glr_auto_examples_07_advanced_plot_localizer_mass_univariate_methods.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/07_advanced/plot_localizer_mass_univariate_methods .. raw:: html
.. only:: html .. figure:: /auto_examples/07_advanced/images/thumb/sphx_glr_plot_ica_neurovault_thumb.png :alt: NeuroVault cross-study ICA maps. :ref:`sphx_glr_auto_examples_07_advanced_plot_ica_neurovault.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/07_advanced/plot_ica_neurovault .. raw:: html
.. only:: html .. figure:: /auto_examples/07_advanced/images/thumb/sphx_glr_plot_haxby_mass_univariate_thumb.png :alt: Massively univariate analysis of face vs house recognition :ref:`sphx_glr_auto_examples_07_advanced_plot_haxby_mass_univariate.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/07_advanced/plot_haxby_mass_univariate .. raw:: html
.. only:: html .. figure:: /auto_examples/07_advanced/images/thumb/sphx_glr_plot_advanced_decoding_scikit_thumb.png :alt: Advanced decoding using scikit learn :ref:`sphx_glr_auto_examples_07_advanced_plot_advanced_decoding_scikit.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/07_advanced/plot_advanced_decoding_scikit .. raw:: html
.. only:: html .. figure:: /auto_examples/07_advanced/images/thumb/sphx_glr_plot_beta_series_thumb.png :alt: Beta-Series Modeling for Task-Based Functional Connectivity and Decoding :ref:`sphx_glr_auto_examples_07_advanced_plot_beta_series.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/07_advanced/plot_beta_series .. raw:: html
.. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-gallery .. container:: sphx-glr-download sphx-glr-download-python :download:`Download all examples in Python source code: auto_examples_python.zip ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download all examples in Jupyter notebooks: auto_examples_jupyter.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_