.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/07_advanced/plot_bids_analysis.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_07_advanced_plot_bids_analysis.py: BIDS dataset first and second level analysis ============================================ Full step-by-step example of fitting a :term:`GLM` to perform a first and second level analysis in a :term:`BIDS` dataset and visualizing the results. Details about the :term:`BIDS` standard can be consulted at `http://bids.neuroimaging.io/ `_. More specifically: 1. Download an :term:`fMRI` :term:`BIDS` dataset with two language conditions to contrast. 2. Extract first level model objects automatically from the :term:`BIDS` dataset. 3. Fit a second level model on the fitted first level models. Notice that in this case the preprocessed :term:`bold` images were already normalized to the same :term:`MNI` space. To run this example, you must launch IPython via ``ipython --matplotlib`` in a terminal, or use the Jupyter notebook. .. contents:: **Contents** :local: :depth: 1 .. GENERATED FROM PYTHON SOURCE LINES 28-36 Fetch example BIDS dataset -------------------------- We download a simplified :term:`BIDS` dataset made available for illustrative purposes. It contains only the necessary information to run a statistical analysis using Nilearn. The raw data subject folders only contain bold.json and events.tsv files, while the derivatives folder includes the preprocessed files preproc.nii and the confounds.tsv files. .. GENERATED FROM PYTHON SOURCE LINES 36-39 .. code-block:: default from nilearn.datasets import fetch_language_localizer_demo_dataset data_dir, _ = fetch_language_localizer_demo_dataset() .. GENERATED FROM PYTHON SOURCE LINES 40-41 Here is the location of the dataset on disk. .. GENERATED FROM PYTHON SOURCE LINES 41-43 .. code-block:: default print(data_dir) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/nicolas/nilearn_data/fMRI-language-localizer-demo-dataset .. GENERATED FROM PYTHON SOURCE LINES 44-52 Obtain automatically FirstLevelModel objects and fit arguments -------------------------------------------------------------- From the dataset directory we automatically obtain the FirstLevelModel objects with their subject_id filled from the :term:`BIDS` dataset. Moreover, we obtain for each model a dictionary with run_imgs, events and confounder regressors since in this case a confounds.tsv file is available in the :term:`BIDS` dataset. To get the first level models we only have to specify the dataset directory and the task_label as specified in the file names. .. GENERATED FROM PYTHON SOURCE LINES 52-59 .. code-block:: default from nilearn.glm.first_level import first_level_from_bids task_label = 'languagelocalizer' models, models_run_imgs, models_events, models_confounds = \ first_level_from_bids( data_dir, task_label, img_filters=[('desc', 'preproc')]) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/nicolas/GitRepos/nilearn-fork/nilearn/glm/first_level/first_level.py:901: UserWarning: SliceTimingRef not found in file /home/nicolas/nilearn_data/fMRI-language-localizer-demo-dataset/derivatives/sub-01/func/sub-01_task-languagelocalizer_desc-preproc_bold.json. It will be assumed that the slice timing reference is 0.0 percent of the repetition time. If it is not the case it will need to be set manually in the generated list of models .. GENERATED FROM PYTHON SOURCE LINES 60-64 Quick sanity check on fit arguments ----------------------------------- Additional checks or information extraction from pre-processed data can be made here. .. GENERATED FROM PYTHON SOURCE LINES 66-67 We just expect one run_img per subject. .. GENERATED FROM PYTHON SOURCE LINES 67-70 .. code-block:: default import os print([os.path.basename(run) for run in models_run_imgs[0]]) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none ['sub-01_task-languagelocalizer_desc-preproc_bold.nii.gz'] .. GENERATED FROM PYTHON SOURCE LINES 71-74 The only confounds stored are regressors obtained from motion correction. As we can verify from the column headers of the confounds table corresponding to the only run_img present. .. GENERATED FROM PYTHON SOURCE LINES 74-76 .. code-block:: default print(models_confounds[0][0].columns) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Index(['RotX', 'RotY', 'RotZ', 'X', 'Y', 'Z'], dtype='object') .. GENERATED FROM PYTHON SOURCE LINES 77-80 During this acquisition the subject read blocks of sentences and consonant strings. So these are our only two conditions in events. We verify there are 12 blocks for each condition. .. GENERATED FROM PYTHON SOURCE LINES 80-82 .. code-block:: default print(models_events[0][0]['trial_type'].value_counts()) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none language 12 string 12 Name: trial_type, dtype: int64 .. GENERATED FROM PYTHON SOURCE LINES 83-90 First level model estimation ---------------------------- Now we simply fit each first level model and plot for each subject the :term:`contrast` that reveals the language network (language - string). Notice that we can define a contrast using the names of the conditions specified in the events dataframe. Sum, subtraction and scalar multiplication are allowed. .. GENERATED FROM PYTHON SOURCE LINES 92-93 Set the threshold as the z-variate with an uncorrected p-value of 0.001. .. GENERATED FROM PYTHON SOURCE LINES 93-96 .. code-block:: default from scipy.stats import norm p001_unc = norm.isf(0.001) .. GENERATED FROM PYTHON SOURCE LINES 97-98 Prepare figure for concurrent plot of individual maps. .. GENERATED FROM PYTHON SOURCE LINES 98-115 .. code-block:: default from nilearn import plotting import matplotlib.pyplot as plt fig, axes = plt.subplots(nrows=2, ncols=5, figsize=(8, 4.5)) model_and_args = zip(models, models_run_imgs, models_events, models_confounds) for midx, (model, imgs, events, confounds) in enumerate(model_and_args): # fit the GLM model.fit(imgs, events, confounds) # compute the contrast of interest zmap = model.compute_contrast('language-string') plotting.plot_glass_brain(zmap, colorbar=False, threshold=p001_unc, title=('sub-' + model.subject_label), axes=axes[int(midx / 5), int(midx % 5)], plot_abs=False, display_mode='x') fig.suptitle('subjects z_map language network (unc p<0.001)') plotting.show() .. image-sg:: /auto_examples/07_advanced/images/sphx_glr_plot_bids_analysis_001.png :alt: subjects z_map language network (unc p<0.001) :srcset: /auto_examples/07_advanced/images/sphx_glr_plot_bids_analysis_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 116-122 Second level model estimation ----------------------------- We just have to provide the list of fitted FirstLevelModel objects to the SecondLevelModel object for estimation. We can do this because all subjects share a similar design matrix (same variables reflected in column names). .. GENERATED FROM PYTHON SOURCE LINES 122-125 .. code-block:: default from nilearn.glm.second_level import SecondLevelModel second_level_input = models .. GENERATED FROM PYTHON SOURCE LINES 126-127 Note that we apply a smoothing of 8mm. .. GENERATED FROM PYTHON SOURCE LINES 127-130 .. code-block:: default second_level_model = SecondLevelModel(smoothing_fwhm=8.0) second_level_model = second_level_model.fit(second_level_input) .. GENERATED FROM PYTHON SOURCE LINES 131-135 Computing contrasts at the second level is as simple as at the first level. Since we are not providing confounders we are performing a one-sample test at the second level with the images determined by the specified first level contrast. .. GENERATED FROM PYTHON SOURCE LINES 135-138 .. code-block:: default zmap = second_level_model.compute_contrast( first_level_contrast='language-string') .. GENERATED FROM PYTHON SOURCE LINES 139-141 The group level contrast reveals a left lateralized fronto-temporal language network. .. GENERATED FROM PYTHON SOURCE LINES 141-145 .. code-block:: default plotting.plot_glass_brain(zmap, colorbar=True, threshold=p001_unc, title='Group language network (unc p<0.001)', plot_abs=False, display_mode='x') plotting.show() .. image-sg:: /auto_examples/07_advanced/images/sphx_glr_plot_bids_analysis_002.png :alt: plot bids analysis :srcset: /auto_examples/07_advanced/images/sphx_glr_plot_bids_analysis_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 59.351 seconds) **Estimated memory usage:** 129 MB .. _sphx_glr_download_auto_examples_07_advanced_plot_bids_analysis.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/07_advanced/plot_bids_analysis.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_bids_analysis.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_bids_analysis.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_