.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/05_glm_second_level/plot_proportion_activated_voxels.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_05_glm_second_level_plot_proportion_activated_voxels.py: Second-level fMRI model: true positive proportion in clusters ============================================================= This script showcases the so-called "All resolution inference" procedure, in which the proportion of true discoveries in arbitrary clusters is estimated. The clusters can be defined from the input image, i.e. in a circular way, as the error control accounts for arbitrary cluster selection. Rosenblatt JD, Finos L, Weeda WD, Solari A, Goeman JJ. All-Resolutions Inference for brain imaging. Neuroimage. 2018 Nov 1;181:786-796. doi: 10.1016/j.neuroimage.2018.07.060 .. GENERATED FROM PYTHON SOURCE LINES 17-22 Fetch dataset -------------- We download a list of left vs right button press contrasts from a localizer dataset. Note that we fetch individual t-maps that represent the BOLD activity estimate divided by the uncertainty about this estimate. .. GENERATED FROM PYTHON SOURCE LINES 22-30 .. code-block:: default from nilearn.datasets import fetch_localizer_contrasts n_subjects = 16 data = fetch_localizer_contrasts( ["left vs right button press"], n_subjects, get_tmaps=True, legacy_format=False ) from nilearn import plotting .. GENERATED FROM PYTHON SOURCE LINES 31-35 Estimate second level model --------------------------- We define the input maps and the design matrix for the second level model and fit it. .. GENERATED FROM PYTHON SOURCE LINES 35-40 .. code-block:: default import pandas as pd second_level_input = data['cmaps'] design_matrix = pd.DataFrame([1] * len(second_level_input), columns=['intercept']) .. GENERATED FROM PYTHON SOURCE LINES 41-42 Model specification and fit .. GENERATED FROM PYTHON SOURCE LINES 42-47 .. code-block:: default from nilearn.glm.second_level import SecondLevelModel second_level_model = SecondLevelModel(smoothing_fwhm=8.0) second_level_model = second_level_model.fit(second_level_input, design_matrix=design_matrix) .. GENERATED FROM PYTHON SOURCE LINES 48-50 To estimate the contrast is very simple. We can just provide the column name of the design matrix. .. GENERATED FROM PYTHON SOURCE LINES 50-52 .. code-block:: default z_map = second_level_model.compute_contrast(output_type='z_score') .. GENERATED FROM PYTHON SOURCE LINES 53-54 We threshold the second level contrast at uncorrected p < 0.001 and plot .. GENERATED FROM PYTHON SOURCE LINES 54-73 .. code-block:: default from scipy.stats import norm p_val = 0.001 p001_uncorrected = norm.isf(p_val) from nilearn.glm import cluster_level_inference proportion_true_discoveries_img = cluster_level_inference( z_map, threshold=[3, 4, 5], alpha=.05) plotting.plot_stat_map( proportion_true_discoveries_img, threshold=0., display_mode='z', vmax=1, colorbar=True, title='group left-right button press, proportion true positives') plotting.plot_stat_map( z_map, threshold=p001_uncorrected, colorbar=True, display_mode='z', title='group left-right button press (uncorrected p < 0.001)') plotting.show() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/05_glm_second_level/images/sphx_glr_plot_proportion_activated_voxels_001.png :alt: plot proportion activated voxels :srcset: /auto_examples/05_glm_second_level/images/sphx_glr_plot_proportion_activated_voxels_001.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/05_glm_second_level/images/sphx_glr_plot_proportion_activated_voxels_002.png :alt: plot proportion activated voxels :srcset: /auto_examples/05_glm_second_level/images/sphx_glr_plot_proportion_activated_voxels_002.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 13.405 seconds) **Estimated memory usage:** 9 MB .. _sphx_glr_download_auto_examples_05_glm_second_level_plot_proportion_activated_voxels.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/05_glm_second_level/plot_proportion_activated_voxels.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_proportion_activated_voxels.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_proportion_activated_voxels.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_