.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/04_glm_first_level/plot_predictions_residuals.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_04_glm_first_level_plot_predictions_residuals.py: Predicted time series and residuals =================================== Here we fit a First Level GLM with the `minimize_memory`-argument set to `False`. By doing so, the `FirstLevelModel`-object stores the residuals, which we can then inspect. Also, the predicted time series can be extracted, which is useful to assess the quality of the model fit. .. include:: ../../../examples/masker_note.rst .. GENERATED FROM PYTHON SOURCE LINES 18-20 Import modules -------------- .. GENERATED FROM PYTHON SOURCE LINES 20-42 .. code-block:: default from nilearn.datasets import fetch_spm_auditory from nilearn import image from nilearn import masking import pandas as pd # load fMRI data subject_data = fetch_spm_auditory() fmri_img = image.concat_imgs(subject_data.func) # Make an average mean_img = image.mean_img(fmri_img) mask = masking.compute_epi_mask(mean_img) # Clean and smooth data fmri_img = image.clean_img(fmri_img, standardize=False) fmri_img = image.smooth_img(fmri_img, 5.) # load events events = pd.read_table(subject_data['events']) .. GENERATED FROM PYTHON SOURCE LINES 43-49 Fit model --------- Note that `minimize_memory` is set to `False` so that `FirstLevelModel` stores the residuals. `signal_scaling` is set to False, so we keep the same scaling as the original data in `fmri_img`. .. GENERATED FROM PYTHON SOURCE LINES 49-60 .. code-block:: default from nilearn.glm.first_level import FirstLevelModel fmri_glm = FirstLevelModel(t_r=7, drift_model='cosine', signal_scaling=False, mask_img=mask, minimize_memory=False) fmri_glm = fmri_glm.fit(fmri_img, events) .. GENERATED FROM PYTHON SOURCE LINES 61-63 Calculate and plot contrast --------------------------- .. GENERATED FROM PYTHON SOURCE LINES 63-69 .. code-block:: default from nilearn import plotting z_map = fmri_glm.compute_contrast('active - rest') plotting.plot_stat_map(z_map, bg_img=mean_img, threshold=3.1) .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_predictions_residuals_001.png :alt: plot predictions residuals :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_predictions_residuals_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 70-72 Extract the largest clusters ---------------------------- .. GENERATED FROM PYTHON SOURCE LINES 72-88 .. code-block:: default from nilearn.reporting import get_clusters_table from nilearn.maskers import NiftiSpheresMasker table = get_clusters_table(z_map, stat_threshold=3.1, cluster_threshold=20).set_index('Cluster ID', drop=True) table.head() # get the 6 largest clusters' max x, y, and z coordinates coords = table.loc[range(1, 7), ['X', 'Y', 'Z']].values # extract time series from each coordinate masker = NiftiSpheresMasker(coords) real_timeseries = masker.fit_transform(fmri_img) predicted_timeseries = masker.fit_transform(fmri_glm.predicted[0]) .. GENERATED FROM PYTHON SOURCE LINES 89-91 Plot predicted and actual time series for 6 most significant clusters --------------------------------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 91-112 .. code-block:: default import matplotlib.pyplot as plt # colors for each of the clusters colors = ['blue', 'navy', 'purple', 'magenta', 'olive', 'teal'] # plot the time series and corresponding locations fig1, axs1 = plt.subplots(2, 6) for i in range(0, 6): # plotting time series axs1[0, i].set_title('Cluster peak {}\n'.format(coords[i])) axs1[0, i].plot(real_timeseries[:, i], c=colors[i], lw=2) axs1[0, i].plot(predicted_timeseries[:, i], c='r', ls='--', lw=2) axs1[0, i].set_xlabel('Time') axs1[0, i].set_ylabel('Signal intensity', labelpad=0) # plotting image below the time series roi_img = plotting.plot_stat_map( z_map, cut_coords=[coords[i][2]], threshold=3.1, figure=fig1, axes=axs1[1, i], display_mode='z', colorbar=False, bg_img=mean_img) roi_img.add_markers([coords[i]], colors[i], 300) fig1.set_size_inches(24, 14) .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_predictions_residuals_002.png :alt: Cluster peak [-60. -6. 42.] , Cluster peak [60. 0. 36.] , Cluster peak [30. -9. 12.] , Cluster peak [-27. -3. 15.] , Cluster peak [57. 21. 75.] , Cluster peak [39. 33. 51.] :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_predictions_residuals_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 113-115 Get residuals ------------- .. GENERATED FROM PYTHON SOURCE LINES 115-118 .. code-block:: default resid = masker.fit_transform(fmri_glm.residuals[0]) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/nicolas/GitRepos/nilearn-fork/nilearn/glm/regression.py:42: FutureWarning: 'resid' has been deprecated in version 0.7.0 and will be removed in version 0.9.0. Please use 'residuals' instead. .. GENERATED FROM PYTHON SOURCE LINES 119-122 Plot distribution of residuals ------------------------------ Note that residuals are not really distributed normally. .. GENERATED FROM PYTHON SOURCE LINES 122-133 .. code-block:: default fig2, axs2 = plt.subplots(2, 3) axs2 = axs2.flatten() for i in range(0, 6): axs2[i].set_title('Cluster peak {}\n'.format(coords[i])) axs2[i].hist(resid[:, i], color=colors[i]) print('Mean residuals: {}'.format(resid[:, i].mean())) fig2.set_size_inches(12, 7) fig2.tight_layout() .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_predictions_residuals_003.png :alt: Cluster peak [-60. -6. 42.] , Cluster peak [60. 0. 36.] , Cluster peak [30. -9. 12.] , Cluster peak [-27. -3. 15.] , Cluster peak [57. 21. 75.] , Cluster peak [39. 33. 51.] :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_predictions_residuals_003.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Mean residuals: 4.440892098500626e-15 Mean residuals: -0.05424369099334821 Mean residuals: 0.0023122829555654403 Mean residuals: 0.011694403952940005 Mean residuals: 0.002376300178617674 Mean residuals: -0.004645997877150698 .. GENERATED FROM PYTHON SOURCE LINES 134-148 Plot R-squared -------------- Because we stored the residuals, we can plot the R-squared: the proportion of explained variance of the GLM as a whole. Note that the R-squared is markedly lower deep down the brain, where there is more physiological noise and we are further away from the receive coils. However, R-Squared should be interpreted with a grain of salt. The R-squared value will necessarily increase with the addition of more factors (such as rest, active, drift, motion) into the GLM. Additionally, we are looking at the overall fit of the model, so we are unable to say whether a voxel/region has a large R-squared value because the voxel/region is responsive to the experiment (such as active or rest) or because the voxel/region fits the noise factors (such as drift or motion) that could be present in the GLM. To isolate the influence of the experiment, we can use an F-test as shown in the next section. .. GENERATED FROM PYTHON SOURCE LINES 148-152 .. code-block:: default plotting.plot_stat_map(fmri_glm.r_square[0], bg_img=mean_img, threshold=.1, display_mode='z', cut_coords=7) .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_predictions_residuals_004.png :alt: plot predictions residuals :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_predictions_residuals_004.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 153-159 Calculate and Plot F-test ------------------------- The F-test tells you how well the GLM fits effects of interest such as the active and rest conditions together. This is different from R-squared, which tells you how well the overall GLM fits the data, including active, rest and all the other columns in the design matrix such as drift and motion. .. GENERATED FROM PYTHON SOURCE LINES 159-178 .. code-block:: default import numpy as np design_matrix = fmri_glm.design_matrices_[0] # contrast with a one for "active" and zero everywhere else active = np.array([1 if c == 'active' else 0 for c in design_matrix.columns]) # contrast with a one for "rest" and zero everywhere else rest = np.array([1 if c == 'rest' else 0 for c in design_matrix.columns]) effects_of_interest = np.vstack((active, rest)) # f-test for rest and activity z_map_ftest = fmri_glm.compute_contrast( effects_of_interest, stat_type='F', output_type='z_score') plotting.plot_stat_map(z_map_ftest, bg_img=mean_img, threshold=3.1, display_mode='z', cut_coords=7) .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_predictions_residuals_005.png :alt: plot predictions residuals :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_predictions_residuals_005.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 35.968 seconds) **Estimated memory usage:** 539 MB .. _sphx_glr_download_auto_examples_04_glm_first_level_plot_predictions_residuals.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/04_glm_first_level/plot_predictions_residuals.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_predictions_residuals.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_predictions_residuals.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_