.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/04_glm_first_level/plot_fixed_effects.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_04_glm_first_level_plot_fixed_effects.py: Example of explicit fixed effects fMRI model fitting ==================================================== This example illustrates how to run a fixed effects model based on pre-computed statistics. This is helpful when the initial models have to be fit separately. For details on the data, please see: Dehaene-Lambertz G, Dehaene S, Anton JL, Campagne A, Ciuciu P, Dehaene G, Denghien I, Jobert A, LeBihan D, Sigman M, Pallier C, Poline JB. Functional segregation of cortical language areas by sentence repetition. Hum Brain Mapp. 2006: 27:360--371. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2653076#R11 Please see `Simple example of two-session :term:`fMRI` model fitting `_ example for details. The main difference is that the fixed-effects model is run explicitly here, after GLM fitting on two sessions. .. GENERATED FROM PYTHON SOURCE LINES 25-29 Prepare data and analysis parameters -------------------------------------- Inspecting 'data', we note that there are two sessions .. GENERATED FROM PYTHON SOURCE LINES 29-34 .. code-block:: default from nilearn.datasets import func data = func.fetch_fiac_first_level() fmri_img = [data['func1'], data['func2']] .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Missing functional scan for session 1. Data absent, downloading... Extracting data from /home/nicolas/nilearn_data/fiac_nilearn.glm/nipy-data-0.2.tar.gz...Error uncompressing file: Compressed file ended before the end-of-stream marker was reached Archive corrupted, trying to download it again. .. GENERATED FROM PYTHON SOURCE LINES 35-36 Create a mean image for plotting purpose .. GENERATED FROM PYTHON SOURCE LINES 36-39 .. code-block:: default from nilearn.image import mean_img mean_img_ = mean_img(fmri_img[0]) .. GENERATED FROM PYTHON SOURCE LINES 40-42 The design matrices were pre-computed, we simply put them in a list of DataFrames .. GENERATED FROM PYTHON SOURCE LINES 42-47 .. code-block:: default design_files = [data['design_matrix1'], data['design_matrix2']] import pandas as pd import numpy as np design_matrices = [pd.DataFrame(np.load(df)['X']) for df in design_files] .. GENERATED FROM PYTHON SOURCE LINES 48-52 GLM estimation ---------------------------------- GLM specification. Note that the mask was provided in the dataset. So we use it. .. GENERATED FROM PYTHON SOURCE LINES 52-57 .. code-block:: default from nilearn.glm.first_level import FirstLevelModel fmri_glm = FirstLevelModel(mask_img=data['mask'], smoothing_fwhm=5, minimize_memory=True) .. GENERATED FROM PYTHON SOURCE LINES 58-60 Compute fixed effects of the two runs and compute related images For this, we first define the contrasts as we would do for a single session .. GENERATED FROM PYTHON SOURCE LINES 60-63 .. code-block:: default n_columns = design_matrices[0].shape[1] contrast_val = np.hstack(([-1, -1, 1, 1], np.zeros(n_columns - 4))) .. GENERATED FROM PYTHON SOURCE LINES 64-65 Statistics for the first session .. GENERATED FROM PYTHON SOURCE LINES 65-77 .. code-block:: default from nilearn import plotting cut_coords = [-129, -126, 49] contrast_id = 'DSt_minus_SSt' fmri_glm = fmri_glm.fit(fmri_img[0], design_matrices=design_matrices[0]) summary_statistics_session1 = fmri_glm.compute_contrast( contrast_val, output_type='all') plotting.plot_stat_map( summary_statistics_session1['z_score'], bg_img=mean_img_, threshold=3.0, cut_coords=cut_coords, title='{0}, first session'.format(contrast_id)) .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fixed_effects_001.png :alt: plot fixed effects :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fixed_effects_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 78-79 Statistics for the second session .. GENERATED FROM PYTHON SOURCE LINES 79-88 .. code-block:: default fmri_glm = fmri_glm.fit(fmri_img[1], design_matrices=design_matrices[1]) summary_statistics_session2 = fmri_glm.compute_contrast( contrast_val, output_type='all') plotting.plot_stat_map( summary_statistics_session2['z_score'], bg_img=mean_img_, threshold=3.0, cut_coords=cut_coords, title='{0}, second session'.format(contrast_id)) .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fixed_effects_002.png :alt: plot fixed effects :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fixed_effects_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 89-90 Fixed effects statistics .. GENERATED FROM PYTHON SOURCE LINES 90-103 .. code-block:: default from nilearn.glm.contrasts import compute_fixed_effects contrast_imgs = [summary_statistics_session1['effect_size'], summary_statistics_session2['effect_size']] variance_imgs = [summary_statistics_session1['effect_variance'], summary_statistics_session2['effect_variance']] fixed_fx_contrast, fixed_fx_variance, fixed_fx_stat = compute_fixed_effects( contrast_imgs, variance_imgs, data['mask']) plotting.plot_stat_map( fixed_fx_stat, bg_img=mean_img_, threshold=3.0, cut_coords=cut_coords, title='{0}, fixed effects'.format(contrast_id)) .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fixed_effects_003.png :alt: plot fixed effects :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fixed_effects_003.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 104-109 Not unexpectedly, the fixed effects version displays higher peaks than the input sessions. Computing fixed effects enhances the signal-to-noise ratio of the resulting brain maps Note however that, technically, the output maps of the fixed effects map is a t statistic (not a z statistic) .. GENERATED FROM PYTHON SOURCE LINES 109-111 .. code-block:: default plotting.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 17.749 seconds) **Estimated memory usage:** 611 MB .. _sphx_glr_download_auto_examples_04_glm_first_level_plot_fixed_effects.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/04_glm_first_level/plot_fixed_effects.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_fixed_effects.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_fixed_effects.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_