.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/04_glm_first_level/plot_fir_model.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_04_glm_first_level_plot_fir_model.py: Analysis of an fMRI dataset with a Finite Impule Response (FIR) model ===================================================================== :term:`FIR` models are used to estimate the hemodyamic response non-parametrically. The example below shows that they're good to do statistical inference even on fast event-related :term:`fMRI` datasets. Here, we demonstrate the use of a :term:`FIR` model with 3 lags, computing 4 contrasts from a single subject dataset from the "Neurospin Localizer". It is a fast event related design: During 5 minutes, 80 events of the following types are presented : ['audio_computation', 'audio_left_hand_button_press', 'audio_right_hand_button_press', 'horizontal_checkerboard', 'sentence_listening', 'sentence_reading', 'vertical_checkerboard', 'visual_computation', 'visual_left_hand_button_press', 'visual_right_hand_button_press'] .. GENERATED FROM PYTHON SOURCE LINES 19-20 At first, we grab the localizer data. .. GENERATED FROM PYTHON SOURCE LINES 20-31 .. code-block:: default import pandas as pd from nilearn.datasets import func data = func.fetch_localizer_first_level() fmri_img = data.epi_img t_r = 2.4 events_file = data['events'] events = pd.read_table(events_file) .. GENERATED FROM PYTHON SOURCE LINES 32-41 Next solution is to try Finite Impulse Response (:term:`FIR`) models: we just say that the :term:`hrf` is an arbitrary function that lags behind the stimulus onset. In the present case, given that the numbers of conditions is high, we should use a simple :term:`FIR` model. Concretely, we set `hrf_model` to 'fir' and `fir_delays` to [1, 2, 3] (scans) corresponding to a 3-step functions on the [1 * t_r, 4 * t_r] seconds interval. .. GENERATED FROM PYTHON SOURCE LINES 41-50 .. code-block:: default from nilearn.glm.first_level import FirstLevelModel from nilearn.plotting import plot_design_matrix, plot_contrast_matrix first_level_model = FirstLevelModel(t_r, hrf_model='fir', fir_delays=[1, 2, 3]) first_level_model = first_level_model.fit(fmri_img, events=events) design_matrix = first_level_model.design_matrices_[0] plot_design_matrix(design_matrix) .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fir_model_001.png :alt: plot fir model :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fir_model_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/nicolas/GitRepos/nilearn-fork/nilearn/glm/first_level/experimental_paradigm.py:89: UserWarning: Unexpected column `Unnamed: 0.1` in events data will be ignored. /home/nicolas/GitRepos/nilearn-fork/nilearn/glm/first_level/experimental_paradigm.py:89: UserWarning: Unexpected column `Unnamed: 0` in events data will be ignored. .. GENERATED FROM PYTHON SOURCE LINES 51-54 We have to adapt contrast specification. We characterize the :term:`BOLD` response by the sum across the three time lags. It's a bit hairy, sorry, but this is the price to pay for flexibility... .. GENERATED FROM PYTHON SOURCE LINES 54-96 .. code-block:: default import numpy as np contrast_matrix = np.eye(design_matrix.shape[1]) contrasts = dict([(column, contrast_matrix[i]) for i, column in enumerate(design_matrix.columns)]) conditions = events.trial_type.unique() for condition in conditions: contrasts[condition] = np.sum( [contrasts[name] for name in design_matrix.columns if name[:len(condition)] == condition], 0) contrasts['audio'] = np.sum([contrasts[name] for name in ['audio_right_hand_button_press', 'audio_left_hand_button_press', 'audio_computation', 'sentence_listening']], 0) contrasts['video'] = np.sum( [contrasts[name] for name in ['visual_right_hand_button_press', 'visual_left_hand_button_press', 'visual_computation', 'sentence_reading']], 0) contrasts['computation'] = contrasts['audio_computation'] +\ contrasts['visual_computation'] contrasts['sentences'] = contrasts['sentence_listening'] +\ contrasts['sentence_reading'] contrasts = { 'left-right': ( contrasts['visual_left_hand_button_press'] + contrasts['audio_left_hand_button_press'] - contrasts['visual_right_hand_button_press'] - contrasts['audio_right_hand_button_press']), 'H-V': (contrasts['horizontal_checkerboard'] - contrasts['vertical_checkerboard']), 'audio-video': contrasts['audio'] - contrasts['video'], 'sentences-computation': (contrasts['sentences'] - contrasts['computation']) } .. GENERATED FROM PYTHON SOURCE LINES 97-98 Take a look at the contrasts. .. GENERATED FROM PYTHON SOURCE LINES 98-100 .. code-block:: default plot_contrast_matrix(contrasts['left-right'], design_matrix) .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fir_model_002.png :alt: plot fir model :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fir_model_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 101-104 Take a breath. We can now proceed by estimating the contrasts and displaying them. .. GENERATED FROM PYTHON SOURCE LINES 104-118 .. code-block:: default import matplotlib.pyplot as plt from nilearn.plotting import plot_stat_map fig = plt.figure(figsize=(11, 3)) for index, (contrast_id, contrast_val) in enumerate(contrasts.items()): ax = plt.subplot(1, len(contrasts), 1 + index) z_map = first_level_model.compute_contrast( contrast_val, output_type='z_score') plot_stat_map( z_map, display_mode='z', threshold=3.0, title=contrast_id, axes=ax, cut_coords=1) plt.show() .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fir_model_003.png :alt: plot fir model :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fir_model_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 119-123 The result is acceptable. Note that we're asking a lot of questions to a small dataset, yet with a relatively large number of experimental conditions. .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 16.270 seconds) **Estimated memory usage:** 305 MB .. _sphx_glr_download_auto_examples_04_glm_first_level_plot_fir_model.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/04_glm_first_level/plot_fir_model.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_fir_model.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_fir_model.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_