.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/04_glm_first_level/plot_fiac_analysis.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_04_glm_first_level_plot_fiac_analysis.py: Simple example of two-session fMRI model fitting ================================================ Here, we will go through a full step-by-step example of fitting a GLM to experimental data and visualizing the results. This is done on two runs of one subject of the FIAC dataset. For details on the data, please see: Dehaene-Lambertz G, Dehaene S, Anton JL, Campagne A, Ciuciu P, Dehaene G, Denghien I, Jobert A, LeBihan D, Sigman M, Pallier C, Poline JB. Functional segregation of cortical language areas by sentence repetition. Hum Brain Mapp. 2006: 27:360--371. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2653076#R11 More specifically: 1. A sequence of fMRI volumes is loaded. 2. A design matrix describing all the effects related to the data is computed. 3. A mask of the useful brain volume is computed. 4. A GLM is applied to the dataset (effect/covariance, then contrast estimation). Technically, this example shows how to handle two sessions that contain the same experimental conditions. The model directly returns a fixed effect of the statistics across the two sessions. .. GENERATED FROM PYTHON SOURCE LINES 32-34 Create a write directory to work, it will be a 'results' subdirectory of the current directory. .. GENERATED FROM PYTHON SOURCE LINES 34-39 .. code-block:: default from os import mkdir, path, getcwd write_dir = path.join(getcwd(), 'results') if not path.exists(write_dir): mkdir(write_dir) .. GENERATED FROM PYTHON SOURCE LINES 40-44 Prepare data and analysis parameters -------------------------------------- Note that there are two sessions. .. GENERATED FROM PYTHON SOURCE LINES 44-49 .. code-block:: default from nilearn.datasets import func data = func.fetch_fiac_first_level() fmri_img = [data['func1'], data['func2']] .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Missing functional scan for session 1. Data absent, downloading... Extracting data from /home/nicolas/nilearn_data/fiac_nilearn.glm/nipy-data-0.2.tar.gz...Error uncompressing file: Compressed file ended before the end-of-stream marker was reached Archive corrupted, trying to download it again. .. GENERATED FROM PYTHON SOURCE LINES 50-51 Create a mean image for plotting purpose. .. GENERATED FROM PYTHON SOURCE LINES 51-54 .. code-block:: default from nilearn.image import mean_img mean_img_ = mean_img(fmri_img[0]) .. GENERATED FROM PYTHON SOURCE LINES 55-57 The design matrices were pre-computed, we simply put them in a list of DataFrames. .. GENERATED FROM PYTHON SOURCE LINES 57-62 .. code-block:: default design_files = [data['design_matrix1'], data['design_matrix2']] import pandas as pd import numpy as np design_matrices = [pd.DataFrame(np.load(df)['X']) for df in design_files] .. GENERATED FROM PYTHON SOURCE LINES 63-66 GLM estimation ---------------------------------- GLM specification. Note that the mask was provided in the dataset. So we use it. .. GENERATED FROM PYTHON SOURCE LINES 66-70 .. code-block:: default from nilearn.glm.first_level import FirstLevelModel fmri_glm = FirstLevelModel(mask_img=data['mask'], minimize_memory=True) .. GENERATED FROM PYTHON SOURCE LINES 71-72 Let's fit the GLM. .. GENERATED FROM PYTHON SOURCE LINES 72-74 .. code-block:: default fmri_glm = fmri_glm.fit(fmri_img, design_matrices=design_matrices) .. GENERATED FROM PYTHON SOURCE LINES 75-77 Compute fixed effects of the two runs and compute related images. For this, we first define the contrasts as we would do for a single session. .. GENERATED FROM PYTHON SOURCE LINES 77-83 .. code-block:: default n_columns = design_matrices[0].shape[1] def pad_vector(contrast_, n_columns): """A small routine to append zeros in contrast vectors""" return np.hstack((contrast_, np.zeros(n_columns - len(contrast_)))) .. GENERATED FROM PYTHON SOURCE LINES 84-85 Contrast specification .. GENERATED FROM PYTHON SOURCE LINES 85-95 .. code-block:: default contrasts = {'SStSSp_minus_DStDSp': pad_vector([1, 0, 0, -1], n_columns), 'DStDSp_minus_SStSSp': pad_vector([-1, 0, 0, 1], n_columns), 'DSt_minus_SSt': pad_vector([-1, -1, 1, 1], n_columns), 'DSp_minus_SSp': pad_vector([-1, 1, -1, 1], n_columns), 'DSt_minus_SSt_for_DSp': pad_vector([0, -1, 0, 1], n_columns), 'DSp_minus_SSp_for_DSt': pad_vector([0, 0, -1, 1], n_columns), 'Deactivation': pad_vector([-1, -1, -1, -1, 4], n_columns), 'Effects_of_interest': np.eye(n_columns)[:5]} .. GENERATED FROM PYTHON SOURCE LINES 96-97 Next, we compute and plot the statistics. .. GENERATED FROM PYTHON SOURCE LINES 97-112 .. code-block:: default from nilearn import plotting print('Computing contrasts...') for index, (contrast_id, contrast_val) in enumerate(contrasts.items()): print(' Contrast % 2i out of %i: %s' % ( index + 1, len(contrasts), contrast_id)) # Estimate the contasts. Note that the model implicitly computes a fixed # effect across the two sessions z_map = fmri_glm.compute_contrast( contrast_val, output_type='z_score') # write the resulting stat images to file z_image_path = path.join(write_dir, '%s_z_map.nii.gz' % contrast_id) z_map.to_filename(z_image_path) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Computing contrasts... Contrast 1 out of 8: SStSSp_minus_DStDSp /home/nicolas/GitRepos/nilearn-fork/nilearn/glm/first_level/first_level.py:657: UserWarning: One contrast given, assuming it for all 2 runs Contrast 2 out of 8: DStDSp_minus_SStSSp Contrast 3 out of 8: DSt_minus_SSt Contrast 4 out of 8: DSp_minus_SSp Contrast 5 out of 8: DSt_minus_SSt_for_DSp Contrast 6 out of 8: DSp_minus_SSp_for_DSt Contrast 7 out of 8: Deactivation Contrast 8 out of 8: Effects_of_interest /home/nicolas/GitRepos/nilearn-fork/nilearn/glm/contrasts.py:352: UserWarning: Running approximate fixed effects on F statistics. .. GENERATED FROM PYTHON SOURCE LINES 113-116 We can then compare session-specific and fixed effects. Here, we compare the activation mas produced from each session separately and then the fixed effects version. .. GENERATED FROM PYTHON SOURCE LINES 116-119 .. code-block:: default contrast_id = 'Effects_of_interest' .. GENERATED FROM PYTHON SOURCE LINES 120-121 Compute the statistics for the first session. .. GENERATED FROM PYTHON SOURCE LINES 121-129 .. code-block:: default fmri_glm = fmri_glm.fit(fmri_img[0], design_matrices=design_matrices[0]) z_map = fmri_glm.compute_contrast( contrasts[contrast_id], output_type='z_score') plotting.plot_stat_map( z_map, bg_img=mean_img_, threshold=3.0, title='%s, first session' % contrast_id) .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fiac_analysis_001.png :alt: plot fiac analysis :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fiac_analysis_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 130-131 Compute the statistics for the second session. .. GENERATED FROM PYTHON SOURCE LINES 131-139 .. code-block:: default fmri_glm = fmri_glm.fit(fmri_img[1], design_matrices=design_matrices[1]) z_map = fmri_glm.compute_contrast( contrasts[contrast_id], output_type='z_score') plotting.plot_stat_map( z_map, bg_img=mean_img_, threshold=3.0, title='%s, second session' % contrast_id) .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fiac_analysis_002.png :alt: plot fiac analysis :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fiac_analysis_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 140-141 Compute the Fixed effects statistics. .. GENERATED FROM PYTHON SOURCE LINES 141-151 .. code-block:: default fmri_glm = fmri_glm.fit(fmri_img, design_matrices=design_matrices) z_map = fmri_glm.compute_contrast( contrasts[contrast_id], output_type='z_score') plotting.plot_stat_map( z_map, bg_img=mean_img_, threshold=3.0, title='%s, fixed effects' % contrast_id) plotting.show() .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fiac_analysis_003.png :alt: plot fiac analysis :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fiac_analysis_003.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/nicolas/GitRepos/nilearn-fork/nilearn/glm/first_level/first_level.py:657: UserWarning: One contrast given, assuming it for all 2 runs /home/nicolas/GitRepos/nilearn-fork/nilearn/glm/contrasts.py:352: UserWarning: Running approximate fixed effects on F statistics. .. GENERATED FROM PYTHON SOURCE LINES 152-155 Not unexpectedly, the fixed effects version displays higher peaks than the input sessions. Computing fixed effects enhances the signal-to-noise ratio of the resulting brain maps. .. GENERATED FROM PYTHON SOURCE LINES 158-162 Generating a report ------------------- Since we have already computed the FirstLevelModel and and have the contrast, we can quickly create a summary report. .. GENERATED FROM PYTHON SOURCE LINES 162-169 .. code-block:: default from nilearn.reporting import make_glm_report report = make_glm_report(fmri_glm, contrasts, bg_img=mean_img_, ) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/nicolas/GitRepos/nilearn-fork/nilearn/glm/first_level/first_level.py:657: UserWarning: One contrast given, assuming it for all 2 runs /home/nicolas/GitRepos/nilearn-fork/nilearn/glm/contrasts.py:352: UserWarning: Running approximate fixed effects on F statistics. .. GENERATED FROM PYTHON SOURCE LINES 170-171 We have several ways to access the report: .. GENERATED FROM PYTHON SOURCE LINES 171-175 .. code-block:: default # report # This report can be viewed in a notebook # report.save_as_html('report.html') # report.open_in_browser() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 1 minutes 8.876 seconds) **Estimated memory usage:** 360 MB .. _sphx_glr_download_auto_examples_04_glm_first_level_plot_fiac_analysis.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/04_glm_first_level/plot_fiac_analysis.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_fiac_analysis.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_fiac_analysis.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_