.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/04_glm_first_level/plot_bids_features.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_04_glm_first_level_plot_bids_features.py: First level analysis of a complete BIDS dataset from openneuro =============================================================== Full step-by-step example of fitting a GLM to perform a first level analysis in an openneuro :term:`BIDS` dataset. We demonstrate how :term:`BIDS` derivatives can be exploited to perform a simple one subject analysis with minimal code. Details about the :term:`BIDS` standard are available at `http://bids.neuroimaging.io/ `_. We also demonstrate how to download individual groups of files from the Openneuro s3 bucket. More specifically: 1. Download an :term:`fMRI` :term:`BIDS` dataset with derivatives from openneuro. 2. Extract first level model objects automatically from the :term:`BIDS` dataset. 3. Demonstrate Quality assurance of Nistats estimation against available FSL. estimation in the openneuro dataset. 4. Display contrast plot and uncorrected first level statistics table report. To run this example, you must launch IPython via ``ipython --matplotlib`` in a terminal, or use the Jupyter notebook. .. contents:: **Contents** :local: :depth: 1 .. GENERATED FROM PYTHON SOURCE LINES 32-39 Fetch openneuro BIDS dataset ----------------------------- We download one subject from the stopsignal task in the ds000030 V4 :term:`BIDS` dataset available in openneuro. This dataset contains the necessary information to run a statistical analysis using Nilearn. The dataset also contains statistical results from a previous FSL analysis that we can employ for comparison with the Nilearn estimation. .. GENERATED FROM PYTHON SOURCE LINES 39-54 .. code-block:: default from nilearn.datasets import (fetch_openneuro_dataset_index, fetch_openneuro_dataset, select_from_index) _, urls = fetch_openneuro_dataset_index() exclusion_patterns = ['*group*', '*phenotype*', '*mriqc*', '*parameter_plots*', '*physio_plots*', '*space-fsaverage*', '*space-T1w*', '*dwi*', '*beh*', '*task-bart*', '*task-rest*', '*task-scap*', '*task-task*'] urls = select_from_index( urls, exclusion_filters=exclusion_patterns, n_subjects=1) data_dir, _ = fetch_openneuro_dataset(urls=urls) .. GENERATED FROM PYTHON SOURCE LINES 55-66 Obtain FirstLevelModel objects automatically and fit arguments --------------------------------------------------------------- From the dataset directory we automatically obtain FirstLevelModel objects with their subject_id filled from the :term:`BIDS` dataset. Moreover we obtain, for each model, the list of run images and their respective events and confound regressors. Those are inferred from the confounds.tsv files available in the :term:`BIDS` dataset. To get the first level models we have to specify the dataset directory, the task_label and the space_label as specified in the file names. We also have to provide the folder with the desired derivatives, that in this case were produced by the :term:`fMRIPrep` :term:`BIDS` app. .. GENERATED FROM PYTHON SOURCE LINES 66-75 .. code-block:: default from nilearn.glm.first_level import first_level_from_bids task_label = 'stopsignal' space_label = 'MNI152NLin2009cAsym' derivatives_folder = 'derivatives/fmriprep' models, models_run_imgs, models_events, models_confounds = \ first_level_from_bids(data_dir, task_label, space_label, smoothing_fwhm=5.0, derivatives_folder=derivatives_folder) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/nicolas/GitRepos/nilearn-fork/nilearn/glm/first_level/first_level.py:901: UserWarning: SliceTimingRef not found in file /home/nicolas/nilearn_data/ds000030/ds000030_R1.0.4/uncompressed/sub-10159/func/sub-10159_task-stopsignal_bold.json. It will be assumed that the slice timing reference is 0.0 percent of the repetition time. If it is not the case it will need to be set manually in the generated list of models .. GENERATED FROM PYTHON SOURCE LINES 76-77 Access the model and model arguments of the subject and process events. .. GENERATED FROM PYTHON SOURCE LINES 77-88 .. code-block:: default model, imgs, events, confounds = ( models[0], models_run_imgs[0], models_events[0], models_confounds[0]) subject = 'sub-' + model.subject_label import os from nilearn.interfaces.fsl import get_design_from_fslmat fsl_design_matrix_path = os.path.join( data_dir, 'derivatives', 'task', subject, 'stopsignal.feat', 'design.mat') design_matrix = get_design_from_fslmat( fsl_design_matrix_path, column_names=None) .. GENERATED FROM PYTHON SOURCE LINES 89-92 We identify the columns of the Go and StopSuccess conditions of the design matrix inferred from the FSL file, to use them later for contrast definition. .. GENERATED FROM PYTHON SOURCE LINES 92-97 .. code-block:: default design_columns = ['cond_%02d' % i for i in range(len(design_matrix.columns))] design_columns[0] = 'Go' design_columns[4] = 'StopSuccess' design_matrix.columns = design_columns .. GENERATED FROM PYTHON SOURCE LINES 98-101 First level model estimation (one subject) ------------------------------------------- We fit the first level model for one subject. .. GENERATED FROM PYTHON SOURCE LINES 101-103 .. code-block:: default model.fit(imgs, design_matrices=[design_matrix]) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none FirstLevelModel(smoothing_fwhm=5.0, subject_label='10159', t_r=2.0) .. GENERATED FROM PYTHON SOURCE LINES 104-106 Then we compute the StopSuccess - Go contrast. We can use the column names of the design matrix. .. GENERATED FROM PYTHON SOURCE LINES 106-108 .. code-block:: default z_map = model.compute_contrast('StopSuccess - Go') .. GENERATED FROM PYTHON SOURCE LINES 109-111 We show the agreement between the Nilearn estimation and the FSL estimation available in the dataset. .. GENERATED FROM PYTHON SOURCE LINES 111-132 .. code-block:: default import nibabel as nib fsl_z_map = nib.load( os.path.join(data_dir, 'derivatives', 'task', subject, 'stopsignal.feat', 'stats', 'zstat12.nii.gz')) from nilearn import plotting import matplotlib.pyplot as plt from scipy.stats import norm plotting.plot_glass_brain(z_map, colorbar=True, threshold=norm.isf(0.001), title='Nilearn Z map of "StopSuccess - Go" (unc p<0.001)', plot_abs=False, display_mode='ortho') plotting.plot_glass_brain(fsl_z_map, colorbar=True, threshold=norm.isf(0.001), title='FSL Z map of "StopSuccess - Go" (unc p<0.001)', plot_abs=False, display_mode='ortho') plt.show() from nilearn.plotting import plot_img_comparison plot_img_comparison([z_map], [fsl_z_map], model.masker_, ref_label='Nilearn', src_label='FSL') plt.show() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_bids_features_001.png :alt: plot bids features :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_bids_features_001.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_bids_features_002.png :alt: plot bids features :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_bids_features_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_bids_features_003.png :alt: Histogram of imgs values :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_bids_features_003.png :class: sphx-glr-multi-img .. GENERATED FROM PYTHON SOURCE LINES 133-136 Simple statistical report of thresholded contrast ----------------------------------------------------- We display the contrast plot and table with cluster information .. GENERATED FROM PYTHON SOURCE LINES 136-143 .. code-block:: default from nilearn.plotting import plot_contrast_matrix plot_contrast_matrix('StopSuccess - Go', design_matrix) plotting.plot_glass_brain(z_map, colorbar=True, threshold=norm.isf(0.001), plot_abs=False, display_mode='z', figure=plt.figure(figsize=(4, 4))) plt.show() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_bids_features_004.png :alt: plot bids features :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_bids_features_004.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_bids_features_005.png :alt: plot bids features :srcset: /auto_examples/04_glm_first_level/images/sphx_glr_plot_bids_features_005.png :class: sphx-glr-multi-img .. GENERATED FROM PYTHON SOURCE LINES 144-146 We can get a latex table from a Pandas Dataframe for display and publication purposes .. GENERATED FROM PYTHON SOURCE LINES 146-149 .. code-block:: default from nilearn.reporting import get_clusters_table print(get_clusters_table(z_map, norm.isf(0.001), 10).to_latex()) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none \begin{tabular}{llrrrrl} \toprule {} & Cluster ID & X & Y & Z & Peak Stat & Cluster Size (mm3) \\ \midrule 0 & 1 & -66.0 & -45.0 & 22.0 & 5.307532 & 6300 \\ 1 & 1a & -66.0 & -33.0 & 18.0 & 4.668929 & \\ 2 & 1b & -48.0 & -36.0 & 14.0 & 4.534376 & \\ 3 & 1c & -57.0 & -48.0 & 10.0 & 4.254210 & \\ 4 & 2 & -42.0 & 15.0 & 26.0 & 4.918703 & 2520 \\ 5 & 2a & -51.0 & 9.0 & 34.0 & 4.715845 & \\ 6 & 2b & -42.0 & 9.0 & 30.0 & 4.683343 & \\ 7 & 2c & -57.0 & 12.0 & 38.0 & 4.587956 & \\ 8 & 3 & 57.0 & -27.0 & 2.0 & 4.692869 & 504 \\ 9 & 3a & 66.0 & -27.0 & 2.0 & 3.664250 & \\ 10 & 4 & 42.0 & 9.0 & 34.0 & 4.461193 & 540 \\ 11 & 5 & 6.0 & 18.0 & 34.0 & 4.257986 & 2520 \\ 12 & 5a & -3.0 & 15.0 & 46.0 & 4.078390 & \\ 13 & 5b & 0.0 & 0.0 & 38.0 & 3.815609 & \\ 14 & 5c & 3.0 & 9.0 & 50.0 & 3.798387 & \\ 15 & 6 & 6.0 & 6.0 & 54.0 & 4.208105 & 468 \\ 16 & 6a & 6.0 & 3.0 & 62.0 & 3.348351 & \\ 17 & 7 & -45.0 & 21.0 & 2.0 & 4.190472 & 504 \\ 18 & 7a & -54.0 & 21.0 & 6.0 & 3.385929 & \\ 19 & 8 & 45.0 & -21.0 & 42.0 & 4.163956 & 432 \\ 20 & 9 & 63.0 & -24.0 & 30.0 & 4.079389 & 360 \\ 21 & 10 & -12.0 & 6.0 & 6.0 & 4.056165 & 792 \\ 22 & 10a & -9.0 & -3.0 & 10.0 & 3.726486 & \\ 23 & 10b & -9.0 & 6.0 & 14.0 & 3.710553 & \\ 24 & 11 & -27.0 & 45.0 & 18.0 & 4.043724 & 432 \\ 25 & 12 & 3.0 & -24.0 & 30.0 & 3.950054 & 360 \\ 26 & 13 & 12.0 & -72.0 & 22.0 & 3.937283 & 360 \\ 27 & 14 & 33.0 & 42.0 & 34.0 & 3.906274 & 756 \\ 28 & 14a & 30.0 & 45.0 & 26.0 & 3.882906 & \\ 29 & 15 & 51.0 & -30.0 & 14.0 & 3.776293 & 648 \\ \bottomrule \end{tabular} .. GENERATED FROM PYTHON SOURCE LINES 150-154 Generating a report ------------------- Using the computed FirstLevelModel and contrast information, we can quickly create a summary report. .. GENERATED FROM PYTHON SOURCE LINES 154-161 .. code-block:: default from nilearn.reporting import make_glm_report report = make_glm_report(model=model, contrasts='StopSuccess - Go', ) .. GENERATED FROM PYTHON SOURCE LINES 162-163 We have several ways to access the report: .. GENERATED FROM PYTHON SOURCE LINES 163-167 .. code-block:: default # report # This report can be viewed in a notebook # report.save_as_html('report.html') # report.open_in_browser() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 30.665 seconds) **Estimated memory usage:** 353 MB .. _sphx_glr_download_auto_examples_04_glm_first_level_plot_bids_features.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/04_glm_first_level/plot_bids_features.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_bids_features.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_bids_features.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_