.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/03_connectivity/plot_sphere_based_connectome.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_03_connectivity_plot_sphere_based_connectome.py: Extract signals on spheres and plot a connectome ============================================================== This example shows how to extract signals from spherical regions. We show how to build spheres around user-defined coordinates, as well as centered on coordinates from the Power-264 atlas [1], and the Dosenbach-160 atlas [2]. .. include:: ../../../examples/masker_note.rst **References** [1] Power, Jonathan D., et al. "Functional network organization of the human brain." Neuron 72.4 (2011): 665-678. [2] Dosenbach N.U., Nardos B., et al. "Prediction of individual brain maturity using fMRI.", 2010, Science 329, 1358-1361. We estimate connectomes using two different methods: **sparse inverse covariance** and **partial_correlation**, to recover the functional brain **networks structure**. We'll start by extracting signals from Default Mode Network regions and computing a connectome from them. .. GENERATED FROM PYTHON SOURCE LINES 30-35 Retrieve the brain development fmri dataset ------------------------------------------- We are going to use a subject from the development functional connectivity dataset. .. GENERATED FROM PYTHON SOURCE LINES 35-44 .. code-block:: default from nilearn import datasets dataset = datasets.fetch_development_fmri(n_subjects=10) # print basic information on the dataset print('First subject functional nifti image (4D) is at: %s' % dataset.func[0]) # 4D data .. rst-class:: sphx-glr-script-out Out: .. code-block:: none First subject functional nifti image (4D) is at: /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz .. GENERATED FROM PYTHON SOURCE LINES 45-47 Coordinates of Default Mode Network ------------------------------------ .. GENERATED FROM PYTHON SOURCE LINES 47-55 .. code-block:: default dmn_coords = [(0, -52, 18), (-46, -68, 32), (46, -68, 32), (1, 50, -5)] labels = [ 'Posterior Cingulate Cortex', 'Left Temporoparietal junction', 'Right Temporoparietal junction', 'Medial prefrontal cortex', ] .. GENERATED FROM PYTHON SOURCE LINES 56-64 Extracts signal from sphere around DMN seeds ---------------------------------------------- We can compute the mean signal within **spheres** of a fixed radius around a sequence of (x, y, z) coordinates with the object :class:`nilearn.maskers.NiftiSpheresMasker`. The resulting signal is then prepared by the masker object: Detrended, band-pass filtered and **standardized to 1 variance**. .. GENERATED FROM PYTHON SOURCE LINES 64-81 .. code-block:: default from nilearn.maskers import NiftiSpheresMasker masker = NiftiSpheresMasker( dmn_coords, radius=8, detrend=True, standardize=True, low_pass=0.1, high_pass=0.01, t_r=2, memory='nilearn_cache', memory_level=1, verbose=2) # Additionally, we pass confound information to ensure our extracted # signal is cleaned from confounds. func_filename = dataset.func[0] confounds_filename = dataset.confounds[0] time_series = masker.fit_transform(func_filename, confounds=[confounds_filename]) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', , { 'allow_overlap': False, 'detrend': True, 'dtype': None, 'high_pass': 0.01, 'high_variance_confounds': False, 'low_pass': 0.1, 'mask_img': None, 'radius': 8, 'seeds': [(0, -52, 18), (-46, -68, 32), (46, -68, 32), (1, 50, -5)], 'smoothing_fwhm': None, 'standardize': True, 'standardize_confounds': True, 't_r': 2}, confounds=[ '/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_desc-reducedConfounds_regressors.tsv'], sample_mask=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=2) [NiftiSpheresMasker.transform_single_imgs] Loading data from /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz [NiftiSpheresMasker.transform_single_imgs] Extracting region signals [NiftiSpheresMasker.transform_single_imgs] Cleaning extracted signals _______________________________________________filter_and_extract - 1.7s, 0.0min .. GENERATED FROM PYTHON SOURCE LINES 82-84 Display time series -------------------- .. GENERATED FROM PYTHON SOURCE LINES 84-96 .. code-block:: default import matplotlib.pyplot as plt for time_serie, label in zip(time_series.T, labels): plt.plot(time_serie, label=label) plt.title('Default Mode Network Time Series') plt.xlabel('Scan number') plt.ylabel('Normalized signal') plt.legend() plt.tight_layout() .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_001.png :alt: Default Mode Network Time Series :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 97-102 Compute partial correlation matrix ----------------------------------- Using object :class:`nilearn.connectome.ConnectivityMeasure`: Its default covariance estimator is Ledoit-Wolf, allowing to obtain accurate partial correlations. .. GENERATED FROM PYTHON SOURCE LINES 102-109 .. code-block:: default from nilearn.connectome import ConnectivityMeasure connectivity_measure = ConnectivityMeasure(kind='partial correlation') partial_correlation_matrix = connectivity_measure.fit_transform( [time_series])[0] .. GENERATED FROM PYTHON SOURCE LINES 110-115 Display connectome ------------------- We display the graph of connections with `:func: nilearn.plotting.plot_connectome`. .. GENERATED FROM PYTHON SOURCE LINES 115-122 .. code-block:: default from nilearn import plotting plotting.plot_connectome(partial_correlation_matrix, dmn_coords, title="Default Mode Network Connectivity") .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_002.png :alt: plot sphere based connectome :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 123-125 Display connectome with hemispheric projections. Notice (0, -52, 18) is included in both hemispheres since x == 0. .. GENERATED FROM PYTHON SOURCE LINES 125-132 .. code-block:: default plotting.plot_connectome(partial_correlation_matrix, dmn_coords, title="Connectivity projected on hemispheres", display_mode='lyrz') plotting.show() .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_003.png :alt: plot sphere based connectome :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 133-139 3D visualization in a web browser --------------------------------- An alternative to :func:`nilearn.plotting.plot_connectome` is to use :func:`nilearn.plotting.view_connectome`, which gives more interactive visualizations in a web browser. See :ref:`interactive-connectome-plotting` for more details. .. GENERATED FROM PYTHON SOURCE LINES 139-147 .. code-block:: default view = plotting.view_connectome(partial_correlation_matrix, dmn_coords) # In a Jupyter notebook, if ``view`` is the output of a cell, it will # be displayed below the cell view .. raw:: html


.. GENERATED FROM PYTHON SOURCE LINES 148-153 .. code-block:: default # uncomment this to open the plot in a web browser: # view.open_in_browser() .. GENERATED FROM PYTHON SOURCE LINES 154-162 Extract signals on spheres from an atlas ---------------------------------------- Next, instead of supplying our own coordinates, we will use coordinates generated at the center of mass of regions from two different atlases. This time, we'll use a different correlation measure. First we fetch the coordinates of the Power atlas .. GENERATED FROM PYTHON SOURCE LINES 162-167 .. code-block:: default power = datasets.fetch_coords_power_2011(legacy_format=False) print('Power atlas comes with {0}.'.format(power.keys())) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Power atlas comes with dict_keys(['rois', 'description']). .. GENERATED FROM PYTHON SOURCE LINES 168-174 .. note:: You can retrieve the coordinates for any atlas, including atlases not included in nilearn, using :func:`nilearn.plotting.find_parcellation_cut_coords`. .. GENERATED FROM PYTHON SOURCE LINES 177-181 Compute within spheres averaged time-series ------------------------------------------- We collect the regions coordinates in a numpy array .. GENERATED FROM PYTHON SOURCE LINES 181-188 .. code-block:: default import numpy as np coords = np.vstack((power.rois['x'], power.rois['y'], power.rois['z'])).T print('Stacked power coordinates in array of shape {0}.'.format(coords.shape)) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Stacked power coordinates in array of shape (264, 3). .. GENERATED FROM PYTHON SOURCE LINES 189-190 and define spheres masker, with small enough radius to avoid regions overlap. .. GENERATED FROM PYTHON SOURCE LINES 190-199 .. code-block:: default spheres_masker = NiftiSpheresMasker( seeds=coords, smoothing_fwhm=6, radius=5., detrend=True, standardize=True, low_pass=0.1, high_pass=0.01, t_r=2) timeseries = spheres_masker.fit_transform(func_filename, confounds=confounds_filename) .. GENERATED FROM PYTHON SOURCE LINES 200-205 Estimate correlations --------------------- We start by estimating the signal **covariance** matrix. Here the number of ROIs exceeds the number of samples, .. GENERATED FROM PYTHON SOURCE LINES 205-208 .. code-block:: default print('time series has {0} samples'.format(timeseries.shape[0])) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none time series has 168 samples .. GENERATED FROM PYTHON SOURCE LINES 209-211 in which situation the graphical lasso **sparse inverse covariance** estimator captures well the covariance **structure**. .. GENERATED FROM PYTHON SOURCE LINES 211-220 .. code-block:: default try: from sklearn.covariance import GraphicalLassoCV except ImportError: # for Scitkit-Learn < v0.20.0 from sklearn.covariance import GraphLassoCV as GraphicalLassoCV covariance_estimator = GraphicalLassoCV(cv=3, verbose=1) .. GENERATED FROM PYTHON SOURCE LINES 221-222 We just fit our regions signals into the `GraphicalLassoCV` object .. GENERATED FROM PYTHON SOURCE LINES 222-225 .. code-block:: default covariance_estimator.fit(timeseries) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. [Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 2.7s finished [GraphicalLassoCV] Done refinement 1 out of 4: 2s [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. [Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 5.6s finished [GraphicalLassoCV] Done refinement 2 out of 4: 8s [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. [Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 8.0s finished [GraphicalLassoCV] Done refinement 3 out of 4: 16s [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. [Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 8.5s finished [GraphicalLassoCV] Done refinement 4 out of 4: 24s /home/nicolas/anaconda3/envs/nilearn/lib/python3.8/site-packages/numpy/core/_methods.py:229: RuntimeWarning: invalid value encountered in subtract GraphicalLassoCV(cv=3, verbose=1) .. GENERATED FROM PYTHON SOURCE LINES 226-227 and get the ROI-to-ROI covariance matrix. .. GENERATED FROM PYTHON SOURCE LINES 227-231 .. code-block:: default matrix = covariance_estimator.covariance_ print('Covariance matrix has shape {0}.'.format(matrix.shape)) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Covariance matrix has shape (264, 264). .. GENERATED FROM PYTHON SOURCE LINES 232-237 Plot matrix, graph, and strength -------------------------------- We use `:func: nilearn.plotting.plot_matrix` to visualize our correlation matrix and display the graph of connections with `nilearn.plotting.plot_connectome`. .. GENERATED FROM PYTHON SOURCE LINES 237-247 .. code-block:: default from nilearn import plotting plotting.plot_matrix(matrix, vmin=-1., vmax=1., colorbar=True, title='Power correlation matrix') # Tweak edge_threshold to keep only the strongest connections. plotting.plot_connectome(matrix, coords, title='Power correlation graph', edge_threshold='99.8%', node_size=20, colorbar=True) .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_004.png :alt: plot sphere based connectome :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_004.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_005.png :alt: plot sphere based connectome :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_005.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 248-253 .. note:: Note the 1. on the matrix diagonal: These are the signals variances, set to 1. by the `spheres_masker`. Hence the covariance of the signal is a correlation matrix. .. GENERATED FROM PYTHON SOURCE LINES 256-259 Sometimes, the information in the correlation matrix is overwhelming and aggregating edge strength from the graph would help. Use the function `nilearn.plotting.plot_markers` to visualize this information. .. GENERATED FROM PYTHON SOURCE LINES 259-271 .. code-block:: default # calculate normalized, absolute strength for each node node_strength = np.sum(np.abs(matrix), axis=0) node_strength /= np.max(node_strength) plotting.plot_markers( node_strength, coords, title='Node strength for absolute value of edges for Power atlas', ) .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_006.png :alt: plot sphere based connectome :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_006.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 272-275 From the correlation matrix, we observe that there is a positive and negative structure. We could make two different plots, one for the positive and one for the negative structure. .. GENERATED FROM PYTHON SOURCE LINES 275-306 .. code-block:: default from matplotlib.pyplot import cm # clip connectivity matrix to preserve positive and negative edges positive_edges = np.clip(matrix, 0, matrix.max()) negative_edges = np.clip(matrix, matrix.min(), 0) # calculate strength for positive edges node_strength_positive = np.sum(np.abs(positive_edges), axis=0) node_strength_positive /= np.max(node_strength_positive) # calculate strength for negative edges node_strength_negative = np.sum(np.abs(negative_edges), axis=0) node_strength_negative /= np.max(node_strength_negative) # plot nodes' strength for positive edges plotting.plot_markers( node_strength_positive, coords, title='Node strength for the positive edges for Power atlas', node_cmap=cm.YlOrRd ) # plot nodes' strength for negative edges plotting.plot_markers( node_strength_negative, coords, title='Node strength for the negative edges for Power atlas', node_cmap=cm.PuBu ) .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_007.png :alt: plot sphere based connectome :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_007.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_008.png :alt: plot sphere based connectome :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_008.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 307-311 Connectome extracted from Dosenbach's atlas ------------------------------------------- We repeat the same steps for Dosenbach's atlas. .. GENERATED FROM PYTHON SOURCE LINES 311-373 .. code-block:: default dosenbach = datasets.fetch_coords_dosenbach_2010(legacy_format=False) coords = np.vstack(( dosenbach.rois['x'], dosenbach.rois['y'], dosenbach.rois['z'], )).T spheres_masker = NiftiSpheresMasker( seeds=coords, smoothing_fwhm=6, radius=4.5, detrend=True, standardize=True, low_pass=0.1, high_pass=0.01, t_r=2) timeseries = spheres_masker.fit_transform(func_filename, confounds=confounds_filename) covariance_estimator = GraphicalLassoCV() covariance_estimator.fit(timeseries) matrix = covariance_estimator.covariance_ plotting.plot_matrix(matrix, vmin=-1., vmax=1., colorbar=True, title='Dosenbach correlation matrix') plotting.plot_connectome(matrix, coords, title='Dosenbach correlation graph', edge_threshold="99.7%", node_size=20, colorbar=True) # calculate average strength for each node node_strength = np.sum(np.abs(matrix), axis=0) node_strength /= np.max(node_strength) plotting.plot_markers( node_strength, coords, title='Node strength for absolute value of edges for Dosenbach atlas', ) # clip connectivity matrix to preserve positive and negative edges positive_edges = np.clip(matrix, 0, matrix.max()) negative_edges = np.clip(matrix, matrix.min(), 0) # calculate strength for positive and edges node_strength_positive = np.sum(np.abs(positive_edges), axis=0) node_strength_positive /= np.max(node_strength_positive) node_strength_negative = np.sum(np.abs(negative_edges), axis=0) node_strength_negative /= np.max(node_strength_negative) # plot nodes' strength for positive edges plotting.plot_markers( node_strength_positive, coords, title='Node strength for the positive edges for Dosenbach atlas', node_cmap=cm.YlOrRd ) # plot nodes' strength for negative edges plotting.plot_markers( node_strength_negative, coords, title='Node strength for the negative edges for Dosenbach atlas', node_cmap=cm.PuBu ) .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_009.png :alt: plot sphere based connectome :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_009.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_010.png :alt: plot sphere based connectome :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_010.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_011.png :alt: plot sphere based connectome :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_011.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_012.png :alt: plot sphere based connectome :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_012.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_013.png :alt: plot sphere based connectome :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_013.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/nicolas/anaconda3/envs/nilearn/lib/python3.8/site-packages/numpy/core/_methods.py:229: RuntimeWarning: invalid value encountered in subtract .. GENERATED FROM PYTHON SOURCE LINES 374-375 We can easily identify the Dosenbach's networks from the matrix blocks. .. GENERATED FROM PYTHON SOURCE LINES 375-379 .. code-block:: default print('Dosenbach networks names are {0}'.format(np.unique(dosenbach.networks))) plotting.show() .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Dosenbach networks names are ['cerebellum' 'cingulo-opercular' 'default' 'fronto-parietal' 'occipital' 'sensorimotor'] .. GENERATED FROM PYTHON SOURCE LINES 380-385 .. seealso:: * :ref:`sphx_glr_auto_examples_03_connectivity_plot_atlas_comparison.py` * :ref:`sphx_glr_auto_examples_03_connectivity_plot_multi_subject_connectome.py` .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 1 minutes 15.830 seconds) **Estimated memory usage:** 405 MB .. _sphx_glr_download_auto_examples_03_connectivity_plot_sphere_based_connectome.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/03_connectivity/plot_sphere_based_connectome.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_sphere_based_connectome.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_sphere_based_connectome.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_