.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/03_connectivity/plot_signal_extraction.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_03_connectivity_plot_signal_extraction.py: Extracting signals from a brain parcellation ============================================ Here we show how to extract signals from a brain parcellation and compute a correlation matrix. We also show the importance of defining good confounds signals: the first correlation matrix is computed after regressing out simple confounds signals: movement regressors, white matter and CSF signals, ... The second one is without any confounds: all regions are connected to each other. Finally we demonstrated the functionality of :func:`nilearn.interfaces.fmriprep.load_confounds` to flexibly select confound variables from :term:`fMRIPrep` outputs while following some implementation guideline of :term:`fMRIPrep` confounds documentation ``_. One reference that discusses the importance of confounds is `Varoquaux and Craddock, Learning and comparing functional connectomes across subjects, NeuroImage 2013 `_. This is just a code example, see the :ref:`corresponding section in the documentation ` for more. .. note:: This example needs SciPy >= 1.0.0 for the reordering of the matrix. .. include:: ../../../examples/masker_note.rst .. GENERATED FROM PYTHON SOURCE LINES 34-36 Retrieve the atlas and the data ------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 36-50 .. code-block:: default from nilearn import datasets dataset = datasets.fetch_atlas_harvard_oxford('cort-maxprob-thr25-2mm') atlas_filename = dataset.maps labels = dataset.labels print('Atlas ROIs are located in nifti image (4D) at: %s' % atlas_filename) # 4D data # One subject of brain development fmri data data = datasets.fetch_development_fmri(n_subjects=1, reduce_confounds=True) fmri_filenames = data.func[0] reduced_confounds = data.confounds[0] # This is a preselected set of confounds .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Atlas ROIs are located in nifti image (4D) at: data shape (91, 109, 91) affine: [[ 2. 0. 0. -90.] [ 0. 2. 0. -126.] [ 0. 0. 2. -72.] [ 0. 0. 0. 1.]] metadata: object, endian='<' sizeof_hdr : 348 data_type : b'' db_name : b'' extents : 0 session_error : 0 regular : b'' dim_info : 0 dim : [ 3 91 109 91 1 1 1 1] intent_p1 : 0.0 intent_p2 : 0.0 intent_p3 : 0.0 intent_code : none datatype : uint8 bitpix : 8 slice_start : 0 pixdim : [1. 2. 2. 2. 1. 1. 1. 1.] vox_offset : 0.0 scl_slope : nan scl_inter : nan slice_end : 0 slice_code : unknown xyzt_units : 0 cal_max : 0.0 cal_min : 0.0 slice_duration : 0.0 toffset : 0.0 glmax : 0 glmin : 0 descrip : b'' aux_file : b'' qform_code : unknown sform_code : aligned quatern_b : 0.0 quatern_c : 0.0 quatern_d : 0.0 qoffset_x : -90.0 qoffset_y : -126.0 qoffset_z : -72.0 srow_x : [ 2. 0. 0. -90.] srow_y : [ 0. 2. 0. -126.] srow_z : [ 0. 0. 2. -72.] intent_name : b'' magic : b'n+1' .. GENERATED FROM PYTHON SOURCE LINES 51-54 Extract signals on a parcellation defined by labels --------------------------------------------------- Using the NiftiLabelsMasker .. GENERATED FROM PYTHON SOURCE LINES 54-63 .. code-block:: default from nilearn.maskers import NiftiLabelsMasker masker = NiftiLabelsMasker(labels_img=atlas_filename, standardize=True, memory='nilearn_cache', verbose=5) # Here we go from nifti files to the signal time series in a numpy # array. Note how we give confounds to be regressed out during signal # extraction time_series = masker.fit_transform(fmri_filenames, confounds=reduced_confounds) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [NiftiLabelsMasker.fit_transform] loading data from Nifti1Image( shape=(91, 109, 91), affine=array([[ 2., 0., 0., -90.], [ 0., 2., 0., -126.], [ 0., 0., 2., -72.], [ 0., 0., 0., 1.]]) ) Resampling labels ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', , { 'background_label': 0, 'detrend': False, 'dtype': None, 'high_pass': None, 'high_variance_confounds': False, 'labels': None, 'labels_img': , 'low_pass': None, 'mask_img': None, 'reports': True, 'smoothing_fwhm': None, 'standardize': True, 'standardize_confounds': True, 'strategy': 'mean', 't_r': None, 'target_affine': None, 'target_shape': None}, confounds=[ '/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_desc-reducedConfounds_regressors.tsv'], sample_mask=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=5) [NiftiLabelsMasker.transform_single_imgs] Loading data from /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz [NiftiLabelsMasker.transform_single_imgs] Extracting region signals [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals _______________________________________________filter_and_extract - 0.8s, 0.0min .. GENERATED FROM PYTHON SOURCE LINES 64-66 Compute and display a correlation matrix ---------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 66-83 .. code-block:: default from nilearn.connectome import ConnectivityMeasure correlation_measure = ConnectivityMeasure(kind='correlation') correlation_matrix = correlation_measure.fit_transform([time_series])[0] # Plot the correlation matrix import numpy as np from nilearn import plotting # Make a large figure # Mask the main diagonal for visualization: np.fill_diagonal(correlation_matrix, 0) # The labels we have start with the background (0), hence we skip the # first label # matrices are ordered for block-like representation plotting.plot_matrix(correlation_matrix, figure=(10, 8), labels=labels[1:], vmax=0.8, vmin=-0.8, title="Confounds", reorder=True) .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_signal_extraction_001.png :alt: plot signal extraction :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_signal_extraction_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 84-90 Extract signals and compute a connectivity matrix without confounds removal --------------------------------------------------------------------------- After covering the basic of signal extraction and functional connectivity matrix presentation, let's look into the impact of confounds to :term:`fMRI` signal and functional connectivity. Firstly let's find out what a functional connectivity matrix looks like without confound removal. .. GENERATED FROM PYTHON SOURCE LINES 90-101 .. code-block:: default time_series = masker.fit_transform(fmri_filenames) # Note how we did not specify confounds above. This is bad! correlation_matrix = correlation_measure.fit_transform([time_series])[0] np.fill_diagonal(correlation_matrix, 0) plotting.plot_matrix(correlation_matrix, figure=(10, 8), labels=labels[1:], vmax=0.8, vmin=-0.8, title='No confounds', reorder=True) .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_signal_extraction_002.png :alt: plot signal extraction :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_signal_extraction_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [NiftiLabelsMasker.fit_transform] loading data from Nifti1Image( shape=(91, 109, 91), affine=array([[ 2., 0., 0., -90.], [ 0., 2., 0., -126.], [ 0., 0., 2., -72.], [ 0., 0., 0., 1.]]) ) ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', , { 'background_label': 0, 'detrend': False, 'dtype': None, 'high_pass': None, 'high_variance_confounds': False, 'labels': None, 'labels_img': , 'low_pass': None, 'mask_img': None, 'reports': True, 'smoothing_fwhm': None, 'standardize': True, 'standardize_confounds': True, 'strategy': 'mean', 't_r': None, 'target_affine': None, 'target_shape': None}, confounds=None, sample_mask=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=5) [NiftiLabelsMasker.transform_single_imgs] Loading data from /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz [NiftiLabelsMasker.transform_single_imgs] Extracting region signals [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals _______________________________________________filter_and_extract - 0.8s, 0.0min .. GENERATED FROM PYTHON SOURCE LINES 102-116 Load confounds from file using a flexible strategy with fmriprep interface -------------------------------------------------------------------------- The :func:`nilearn.interfaces.fmriprep.load_confounds` function provides flexible parameters to retrieve the relevant columns from the TSV file generated by :term:`fMRIPrep`. :func:`nilearn.interfaces.fmriprep.load_confounds` ensures two things: 1. The correct regressors are selected with provided strategy, and 2. Volumes such as non-steady-state and/or high motion volumes are masked out correctly. Let's try a simple strategy removing motion, white matter signal, cerebrospinal fluid signal with high-pass filtering. .. GENERATED FROM PYTHON SOURCE LINES 116-138 .. code-block:: default from nilearn.interfaces.fmriprep import load_confounds confounds_simple, sample_mask = load_confounds( fmri_filenames, strategy=["high_pass", "motion", "wm_csf"], motion="basic", wm_csf="basic") print("The shape of the confounds matrix is:", confounds_simple.shape) print(confounds_simple.columns) time_series = masker.fit_transform(fmri_filenames, confounds=confounds_simple, sample_mask=sample_mask) correlation_matrix = correlation_measure.fit_transform([time_series])[0] np.fill_diagonal(correlation_matrix, 0) plotting.plot_matrix(correlation_matrix, figure=(10, 8), labels=labels[1:], vmax=0.8, vmin=-0.8, title='Motion, WM, CSF', reorder=True) .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_signal_extraction_003.png :alt: plot signal extraction :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_signal_extraction_003.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none The shape of the confounds matrix is: (168, 12) Index(['cosine00', 'cosine01', 'cosine02', 'cosine03', 'csf', 'rot_x', 'rot_y', 'rot_z', 'trans_x', 'trans_y', 'trans_z', 'white_matter'], dtype='object') [NiftiLabelsMasker.fit_transform] loading data from Nifti1Image( shape=(91, 109, 91), affine=array([[ 2., 0., 0., -90.], [ 0., 2., 0., -126.], [ 0., 0., 2., -72.], [ 0., 0., 0., 1.]]) ) ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', , { 'background_label': 0, 'detrend': False, 'dtype': None, 'high_pass': None, 'high_variance_confounds': False, 'labels': None, 'labels_img': , 'low_pass': None, 'mask_img': None, 'reports': True, 'smoothing_fwhm': None, 'standardize': True, 'standardize_confounds': True, 'strategy': 'mean', 't_r': None, 'target_affine': None, 'target_shape': None}, confounds=[ cosine00 cosine01 cosine02 cosine03 ... trans_x trans_y trans_z white_matter 0 0.109104 0.109090 0.109066 0.109033 ... 0.006621 -0.026078 0.055006 -0.876886 1 0.109066 0.108937 0.108723 0.108423 ... 0.000668 -0.027587 0.049458 -1.418909 2 0.108990 0.108632 0.108038 0.107207 ... 0.006628 -0.019085 0.075787 -1.540842 3 0.108875 0.108176 0.107012 0.105391 ... 0.009347 -0.023900 0.053022 -1.922085 4 0.108723 0.107567 0.105651 0.102986 ... 0.006629 -0.033396 0.077764 -1.843388 .. ... ... ... ... ... ... ... ... ... 163 -0.108723 0.107567 -0.105651 0.102986 ... -0.010477 0.064873 -0.022169 1.221217 164 -0.108875 0.108176 -0.107012 0.105391 ... -0.012250 -0.064266 -0.042248 1.237783 165 -0.108990 0.108632 -0.108038 0.107207 ... -0.004304 0.053241 -0.029500 1.590905 166 -0.109066 0.108937 -0.108723 0.108423 ... -0.008227 -0.081559 -0.034236 1.122246 167 -0.109104 0.109090 -0.109066 0.109033 ... -0.020041 0.069287 -0.007294 1.000828 [168 rows x 12 columns]], sample_mask=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=5) [NiftiLabelsMasker.transform_single_imgs] Loading data from /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz [NiftiLabelsMasker.transform_single_imgs] Extracting region signals [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals _______________________________________________filter_and_extract - 0.8s, 0.0min .. GENERATED FROM PYTHON SOURCE LINES 139-150 Motion-based scrubbing ---------------------- With a scrubbing-based strategy, :func:`~nilearn.interfaces.fmriprep.load_confounds` returns a `sample_mask` that removes the index of volumes exceeding the framewise displacement and standardised DVARS threshold, and all the continuous segment with less than five volumes. Before applying scrubbing, it's important to access the percentage of volumns scrubbed. Scrubbing is not a suitable strategy for datasets with too many high motion subjects. On top of the simple strategy above, let's add scrubbing to our strategy. .. GENERATED FROM PYTHON SOURCE LINES 150-175 .. code-block:: default confounds_scrub, sample_mask = load_confounds( fmri_filenames, strategy=["high_pass", "motion", "wm_csf", "scrub"], motion="basic", wm_csf="basic", scrub=5, fd_threshold=0.2, std_dvars_threshold=3) print("After scrubbing, {} out of {} volumes remains".format( sample_mask.shape[0], confounds_scrub.shape[0])) print("The shape of the confounds matrix is:", confounds_simple.shape) print(confounds_scrub.columns) time_series = masker.fit_transform(fmri_filenames, confounds=confounds_scrub, sample_mask=sample_mask) correlation_matrix = correlation_measure.fit_transform([time_series])[0] np.fill_diagonal(correlation_matrix, 0) plotting.plot_matrix(correlation_matrix, figure=(10, 8), labels=labels[1:], vmax=0.8, vmin=-0.8, title='Motion, WM, CSF, Scrubbing', reorder=True) .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_signal_extraction_004.png :alt: plot signal extraction :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_signal_extraction_004.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none After scrubbing, 119 out of 168 volumes remains The shape of the confounds matrix is: (168, 12) Index(['cosine00', 'cosine01', 'cosine02', 'cosine03', 'csf', 'rot_x', 'rot_y', 'rot_z', 'trans_x', 'trans_y', 'trans_z', 'white_matter'], dtype='object') [NiftiLabelsMasker.fit_transform] loading data from Nifti1Image( shape=(91, 109, 91), affine=array([[ 2., 0., 0., -90.], [ 0., 2., 0., -126.], [ 0., 0., 2., -72.], [ 0., 0., 0., 1.]]) ) ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', , { 'background_label': 0, 'detrend': False, 'dtype': None, 'high_pass': None, 'high_variance_confounds': False, 'labels': None, 'labels_img': , 'low_pass': None, 'mask_img': None, 'reports': True, 'smoothing_fwhm': None, 'standardize': True, 'standardize_confounds': True, 'strategy': 'mean', 't_r': None, 'target_affine': None, 'target_shape': None}, confounds=[ cosine00 cosine01 cosine02 cosine03 ... trans_x trans_y trans_z white_matter 0 0.097319 0.110228 0.100980 0.127209 ... 0.005385 -0.024472 0.048861 -0.796008 1 0.097281 0.110075 0.100637 0.126600 ... -0.000568 -0.025982 0.043313 -1.338031 2 0.097205 0.109770 0.099952 0.125384 ... 0.005391 -0.017480 0.069643 -1.459963 3 0.097090 0.109313 0.098926 0.123568 ... 0.008110 -0.022294 0.046877 -1.841207 4 0.096938 0.108705 0.097565 0.121163 ... 0.005392 -0.031791 0.071620 -1.762509 .. ... ... ... ... ... ... ... ... ... 163 -0.120508 0.108705 -0.113737 0.121163 ... -0.011713 0.066478 -0.028314 1.302095 164 -0.120661 0.109313 -0.115099 0.123568 ... -0.013487 -0.062660 -0.048393 1.318661 165 -0.120775 0.109770 -0.116124 0.125384 ... -0.005541 0.054846 -0.035645 1.671784 166 -0.120851 0.110075 -0.116809 0.126600 ... -0.009463 -0.079953 -0.040381 1.203124 167 -0.120889 0.110228 -0.117152 0.127209 ... -0.021277 0.070892 -0.013439 1.081706 [168 rows x 12 columns]], sample_mask=array([ 0, ..., 152]), dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=5) [NiftiLabelsMasker.transform_single_imgs] Loading data from /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz [NiftiLabelsMasker.transform_single_imgs] Extracting region signals [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals _______________________________________________filter_and_extract - 0.8s, 0.0min .. GENERATED FROM PYTHON SOURCE LINES 176-183 The impact of global signal removal ----------------------------------- Global signal removes the grand mean from your signal. The benefit is that it can remove impacts of physiological artifacts with minimal impact on the degrees of freedom. The downside is that one cannot get insight into variance explained by certain sources of noise. Now let's add global signal to the simple strategy and see its impact. .. GENERATED FROM PYTHON SOURCE LINES 183-205 .. code-block:: default confounds_minimal_no_gsr, sample_mask = load_confounds( fmri_filenames, strategy=["high_pass", "motion", "wm_csf", "global_signal"], motion="basic", wm_csf="basic", global_signal="basic") print("The shape of the confounds matrix is:", confounds_minimal_no_gsr.shape) print(confounds_minimal_no_gsr.columns) time_series = masker.fit_transform(fmri_filenames, confounds=confounds_minimal_no_gsr, sample_mask=sample_mask) correlation_matrix = correlation_measure.fit_transform([time_series])[0] np.fill_diagonal(correlation_matrix, 0) plotting.plot_matrix(correlation_matrix, figure=(10, 8), labels=labels[1:], vmax=0.8, vmin=-0.8, title='Motion, WM, CSF, GSR', reorder=True) .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_signal_extraction_005.png :alt: plot signal extraction :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_signal_extraction_005.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none The shape of the confounds matrix is: (168, 13) Index(['cosine00', 'cosine01', 'cosine02', 'cosine03', 'csf', 'global_signal', 'rot_x', 'rot_y', 'rot_z', 'trans_x', 'trans_y', 'trans_z', 'white_matter'], dtype='object') [NiftiLabelsMasker.fit_transform] loading data from Nifti1Image( shape=(91, 109, 91), affine=array([[ 2., 0., 0., -90.], [ 0., 2., 0., -126.], [ 0., 0., 2., -72.], [ 0., 0., 0., 1.]]) ) ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', , { 'background_label': 0, 'detrend': False, 'dtype': None, 'high_pass': None, 'high_variance_confounds': False, 'labels': None, 'labels_img': , 'low_pass': None, 'mask_img': None, 'reports': True, 'smoothing_fwhm': None, 'standardize': True, 'standardize_confounds': True, 'strategy': 'mean', 't_r': None, 'target_affine': None, 'target_shape': None}, confounds=[ cosine00 cosine01 cosine02 cosine03 ... trans_x trans_y trans_z white_matter 0 0.109104 0.109090 0.109066 0.109033 ... 0.006621 -0.026078 0.055006 -0.876886 1 0.109066 0.108937 0.108723 0.108423 ... 0.000668 -0.027587 0.049458 -1.418909 2 0.108990 0.108632 0.108038 0.107207 ... 0.006628 -0.019085 0.075787 -1.540842 3 0.108875 0.108176 0.107012 0.105391 ... 0.009347 -0.023900 0.053022 -1.922085 4 0.108723 0.107567 0.105651 0.102986 ... 0.006629 -0.033396 0.077764 -1.843388 .. ... ... ... ... ... ... ... ... ... 163 -0.108723 0.107567 -0.105651 0.102986 ... -0.010477 0.064873 -0.022169 1.221217 164 -0.108875 0.108176 -0.107012 0.105391 ... -0.012250 -0.064266 -0.042248 1.237783 165 -0.108990 0.108632 -0.108038 0.107207 ... -0.004304 0.053241 -0.029500 1.590905 166 -0.109066 0.108937 -0.108723 0.108423 ... -0.008227 -0.081559 -0.034236 1.122246 167 -0.109104 0.109090 -0.109066 0.109033 ... -0.020041 0.069287 -0.007294 1.000828 [168 rows x 13 columns]], sample_mask=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=5) [NiftiLabelsMasker.transform_single_imgs] Loading data from /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz [NiftiLabelsMasker.transform_single_imgs] Extracting region signals [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals _______________________________________________filter_and_extract - 0.8s, 0.0min .. GENERATED FROM PYTHON SOURCE LINES 206-216 Using predefined strategies --------------------------- Instead of customising the strategy through :func:`nilearn.interfaces.fmriprep.load_confounds`, one can use a predefined strategy with :func:`nilearn.interfaces.fmriprep.load_confounds_strategy`. Based on the confound variables generated through :term:`fMRIPrep`, and past benchmarks studies (:footcite:`Ciric2017`, :footcite:`Parker2018`): `simple`, `scrubbing`, `compcor`, `ica_aroma`. The following examples shows how to use the `simple` strategy and overwrite the motion default to basic. .. GENERATED FROM PYTHON SOURCE LINES 216-256 .. code-block:: default from nilearn.interfaces.fmriprep import load_confounds_strategy # use default parameters confounds, sample_mask = load_confounds_strategy( fmri_filenames, denoise_strategy="simple", motion="basic" ) time_series = masker.fit_transform(fmri_filenames, confounds=confounds, sample_mask=sample_mask) correlation_matrix = correlation_measure.fit_transform([time_series])[0] np.fill_diagonal(correlation_matrix, 0) plotting.plot_matrix(correlation_matrix, figure=(10, 8), labels=labels[1:], vmax=0.8, vmin=-0.8, title='simple', reorder=True) # add optional parameter global signal confounds, sample_mask = load_confounds_strategy( fmri_filenames, denoise_strategy="simple", motion="basic", global_signal="basic" ) time_series = masker.fit_transform(fmri_filenames, confounds=confounds, sample_mask=sample_mask) correlation_matrix = correlation_measure.fit_transform([time_series])[0] np.fill_diagonal(correlation_matrix, 0) plotting.plot_matrix(correlation_matrix, figure=(10, 8), labels=labels[1:], vmax=0.8, vmin=-0.8, title='simple with global signal', reorder=True) plotting.show() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_signal_extraction_006.png :alt: plot signal extraction :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_signal_extraction_006.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_signal_extraction_007.png :alt: plot signal extraction :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_signal_extraction_007.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [NiftiLabelsMasker.fit_transform] loading data from Nifti1Image( shape=(91, 109, 91), affine=array([[ 2., 0., 0., -90.], [ 0., 2., 0., -126.], [ 0., 0., 2., -72.], [ 0., 0., 0., 1.]]) ) [Memory]9.4s, 0.2min : Loading _filter_and_extract... __________________________________filter_and_extract cache loaded - 0.0s, 0.0min [NiftiLabelsMasker.fit_transform] loading data from Nifti1Image( shape=(91, 109, 91), affine=array([[ 2., 0., 0., -90.], [ 0., 2., 0., -126.], [ 0., 0., 2., -72.], [ 0., 0., 0., 1.]]) ) [Memory]9.8s, 0.2min : Loading _filter_and_extract... __________________________________filter_and_extract cache loaded - 0.0s, 0.0min .. GENERATED FROM PYTHON SOURCE LINES 257-261 References ---------- .. footbibliography:: .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 11.524 seconds) **Estimated memory usage:** 395 MB .. _sphx_glr_download_auto_examples_03_connectivity_plot_signal_extraction.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/03_connectivity/plot_signal_extraction.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_signal_extraction.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_signal_extraction.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_